
Boot System Services Interface (SSI) Modules
for LAM/MPI

API Version 1.0.0 / SSI Version 1.0.0

Jeffrey M. Squyres
Brian Barrett

Andrew Lumsdaine
http://www.lam-mpi.org/

Open Systems Laboratory
Pervasive Technologies Labs

Indiana University
CS TR576

August 4, 2003

http://www.lam-mpi.org/

Contents

1 Overview 4
1.1 General Scheme. 4

1.1.1 Starting LAM RTE Executables. 4
1.1.2 Exchanging Startup Protocols. 5

1.2 Booting Algorithms. 5
1.3 Error Handling . 6

2 Services Provided by theboot SSI 7
2.1 Header Files. 7
2.2 Module Selection Mechanism. 7
2.3 Types .7

2.3.1 struct lamnode . 8
2.3.2 struct psc . 9
2.3.3 lam ssi boot proc t . 9

2.4 Global Variables. .10
2.4.1 int lam ssi boot base server port . 10
2.4.2 int lam ssi boot did .10
2.4.3 int lam ssi boot verbose . 10
2.4.4 int lam ssi boot optd .10

2.5 Functions .11
2.5.1 bhostparse() .11
2.5.2 hbootparse() .11
2.5.3 lam deallocate nodes() .12
2.5.4 lam ssi boot base check priority() . 12
2.5.5 lam ssi boot base find boot schema() 12
2.5.6 lam ssi boot base find hostname() . 13
2.5.7 lam ssi boot base lamgrow() . 13
2.5.8 lam ssi boot base ioexecvp() . 13
2.5.9 lam ssi boot build inet topo() . 14
2.5.10 lam ssi boot do commonargs() . 14
2.5.11 Built-in Algorithms. .14
2.5.12 TCP-Based Startup Protocols. .15

3 boot SSI Module API 16
3.1 Data Item:lsb meta info .18
3.2 API Function Call:lsb init .18
3.3 API Function Call:lsb finalize .18
3.4 API Function Call:lsba parse options . 19
3.5 API Function Call:lsba allocate nodes . 19
3.6 API Function Call:lsba verify nodes . 20
3.7 API Function Call:lsba prepare boot . 20
3.8 API Function Call:lsba start rte procs . 21
3.9 API Function Call:lsba deallocate nodes . 21
3.10 Algorithm Callback Function Call:lsba start application 22
3.11 Algorithm Callback Function Call:lsba start rte proc 22
3.12 Protocol Function Call:lsba open srv connection 23

2

3.13 Protocol Function Call:lsba send lamd info . 23
3.14 Protocol Function Call:lsba receive lamd info . 23
3.15 Protocol Function Call:lsba close srv connection 24
3.16 Protocol Function Call:lsba send universe info 24
3.17 Protocol Function Call:lsba receive universe info 25

4 To Be Determined 25

5 Acknowledgements 25

References 25

3

1 Overview

Before reading this document, readers are strongly encouraged to read the general LAM/MPI System Ser-
vices Interface (SSI) overview ([2]). This document uses the terminology and structure defined in that
document.

The boot SSI kind is used to start a LAM universe. Its primary responsibility is to start processes on
local and remote nodes that either will constitute the LAM run-time environment (RTE) or function outside
the LAM RTE.

The most commonly understood paradigm for this is usingrsh or ssh to start processes on remote
nodes. However, there are many other environments where usingrsh /ssh is superfluous, not possible, or
subverts other RTEs. Examples include (but are not limited to):

• Batch queuing systems. PBS,1 for example, has the Task Management (TM) API that can be used for
launching processes on nodes that the job owns. Indeed, using TM instead ofrsh /ssh will allows
PBS to guarantee clean up when a job is done and to provide better accounting of resources. This
same principle generally holds true for other batch queuing systems as well.

• BProc systems. BProc clusters use multiple machines to emulate a single, large system. As such, there
is really only one “machine”, and usingrsh /ssh not only “seems odd” in this situation, it actually
creates problems. Using the native BProc-based controls is a much better fit.

• Condor.2 Condor already has an RTE with extensive process control mechanisms; there is no need to
usersh /ssh in such environments.

• Globus.3 Globus is used to connect multiple sites; usingrsh /ssh may not be possible between
them. Globus also has an RTE with extensive process control mechanisms that should be used instead
of rsh /ssh .

Hence, theboot SSI abstracts the process of starting LAM RTE processes on local and remote nodes
and provides and interface such that different RTEs can provide modules for “native” LAM booting in each
environment.

1.1 General Scheme

There are actually two components of theboot SSI module: starting LAM RTE processes and executing a
startup protocol.

1.1.1 Starting LAM RTE Executables

Theboot SSI is used in the following LAM executables:

• lamboot : Starts up a set of “LAM daemons” (each of which may be one or multiple processes) on
a node.

• lamgrow : Expand a currently-running LAM universe by adding another “LAM daemon” on a remote
node.

1Seehttp://www.openpbs.org/ .
2Seehttp://www.cs.wisc.edu/condor/ .
3Seehttp://www.globus.org/ .

4

• recon : Executes a test program on a set of nodes to verify functionality.

• wipe : Forcibly shut down a LAM RTE by executing the LAM commandtkill on a set of nodes.

The sequence ofboot API calls when starting LAM RTE executables on remote nodes is listed in
Table1.

Time Booting agent
1 open module()
2 init()
3 Module is selected
4 parse options()
5 allocate nodes()
6 verify nodes()
7 prepare boot()
8 start rte procs()
9 Launch RTE procs on remote nodes

If LAM-provided algorithm used:
9.1 start rte proc()
9.2 start rte application()
10 deallocate nodes()
11 finalize()
12 close module()

Table 1: Sequence ofboot API calls over the life of a selected module (excluding the startup protocols).
Steps 9.1 and 9.2 are only invoked if one of the LAM-provided boot algorithms is used. All of step 9 will
be repeated for as many nodes need to be booted.

1.1.2 Exchanging Startup Protocols

lamboot andlamgrow must exchange information to make the newly-spawned LAM daemons aware of
all of its peers. This is what is referred to as “executing the startup protocols.” The startup protocols are
only necessary when starting LAM daemons on remote nodes;recon andwipe do not use these startup
protocols.

The booting agent will start one or more LAM daemons. Each of these newly-spawned LAM daemons
will connect back to the booting agent and send its location information (e.g., its UDP port). The booting
agent will gather all of this information and, once all the LAM daemons have reported in, will connect back
to each of them and send the union of all the information. The union represents the entire LAM universe,
and is how the LAM daemons become aware of their peers. Table2 shows this sequence of events.

1.2 Booting Algorithms

Eachboot module is responsible for launching LAM executables on remote nodes. The algorithm used to
start execution over a set of nodes is up to the module; a module can provide its own functionality or use one
of the LAM-provided generic algorithm frameworks. The LAM-provided algorithm frameworks provide all
the structure and bookkeeping necessary to launch across a set of nodes (including error detection).

5

Time Booting agent LAM daemon
1 open srv connection()
2 Launch remote LAM daemon
3 receive lamd info() send lamd info()
4 close srv connection()
5 send universe info() receive universe info()

Table 2: Sequence ofboot API calls during the startup protocols for one LAM daemon. If more than one
LAM daemon was booted, steps 3 and 5 would be repeated for each.

If a module chooses to utilize the built-in algorithms, it provides function pointers for callbacks before
invoking the algorithm function. The algorithm function will then iterate over all nodes in the set, invoking
the module’s callback functions to launch executables on remote nodes.

The callback functions required by the provided algorithms are marked as “Algorithm Callback ” and
are described in Section3 (page16). If a module chooses not to use these algorithms, the callback functions
do not need to be provided, andNULL should be specified for these function pointers.

The following generic algorithm frameworks are provided in LAM/MPI:

• Linear: A linear approach is used to launch a set of processes: each process is individually started
and, if requested, the startup protocols are executed. The next process is not started until the current
process has been fully established. This is the simplest algorithm.

• Linear / windowed: Well-suited for remote agents that do not need to wait for remote processes to
complete launching, this algorithm uses a linear approach with a sliding window for remote process
callbacks – never allowing more thanN callbacks to be outstanding at any given time. This algo-
rithm is typically only useful for launching LAM daemons (i.e., processes that require callbacks to
the booting agent) when hiding the latency involved in remote launching and/or startup protocols is
noticeable, and will fall through to the normal linear algorithm if startup protocols are not required.

• Tree: A tree-based approach is used to launch a set of processes. Interior nodes in the tree will have
“helper” processes launched on them in addition to the target RTE process (the “helper” is part of
theboot SSI framework and does not need to be provided by the module). The helper process will
launch more helpers and/or target RTE processes. The out degree of each node is determined at run
time. Note that the tree algorithm is still linear at each node – even thoughN children processes will
be started, the same general linear algorithm is followed (wait for each process to “fully start” before
starting the next one).

Note: As of this writing, the tree algorithm has not yet been implemented.

• Thread: Same as the tree algorithm, except that multiple threads are used, andboot SSI API calls
may be overlapped. The big difference between thread and tree is thatboot SSI modules that support
the thread algorithm must not only be thread safe, but also provide a high level of concurrency when
its API calls are simultaneously invoked with orthogonal sets of parameters.

Note: As of this writing, the thread algorithm has not yet been implemented.

1.3 Error Handling

Any errors that occur within API functions are expected to be handled by that API call, to include outputting
error messages. Returning failure statuses from API calls will generally propagate up to the top-level and
cause an overall failure, unless otherwise specified.

6

2 Services Provided by theboot SSI

Several services are provided by theboot SSI that are available to allboot modules.

2.1 Header Files

The following header files must be included (in order) in all module source files that want to use any of the
commonboot SSI services described in this document:� �
#include<lam−ssi.h>
#include<lam−ssi−boot.h>� �

Both of these files are included in the same location:share/ssi/include . If using GNU Automake
and thetop lam srcdir macro as recommended in [2], the following can be added to theAMCPPFLAGS
macro (remember thatLAMBUILDING must be defined to be 1):� �
AM CPPFLAGS =\

−I$(top lam builddir)/share/include\
−I$(top lam srcdir)/share/include\
−I$(top lam srcdir)/share/ssi/include� �

All three flags are necessary to obtain the necessary header files (note that the build directory is explicitly
included in order to support VPATH builds properly, even though it will be redundant in non-VPATH builds).

2.2 Module Selection Mechanism

The selection of whichboot SSI module to use persists through the life of the LAM universe. This is not
only goverend by the fact that the LAM daemons will make aboot module selection when initially launched
and keep using that selection until the end of the universe; it simply does not make sense to change theboot
module selection after the LAM universe has been established.

Hence, since all LAM processes will only exist within the timeframe that the LAM universe, the scop of
theboot module selection is the life of the process (in the case of the LAM daemon, this coincides with the
life of the universe). As such, there will only ever be one module selected during a given process. Selection
typically occurs during the initialization of the process. All unselected modules will immediately have their
finalize API function invoked (if their initialize API function was invoked), followed by their close function
(if provided). They will then be ignored for the duration of the process.

No LAM-provided communication is available betweenboot modules of peer processes because by
definition, there is no LAM run-time environment when theboot modules are initialized. Hence, selection
consensus must be able to be achieved independently, or utilize communication channels that are provided
by the underlying boot mechanism.

boot module authors should be particularly careful about using environment variables to communicate
values between modules. Some underlying boot mechanisms will automatically copy the environment to
the remote process (e.g., TM/PBS), but others may not (e.g.,rsh /ssh).

2.3 Types

Some types are used in different API calls and throughout theboot SSI.

7

2.3.1 struct lamnode

This type is used to describe nodes in the LAM universe. It is prototyped in<lamnet.h> .� �
struct lamnode{

int4 lnd nodeid;
int4 lnd type;
int4 lnd ncpus;
int lnd bootport;
char ∗lnd hname;
char ∗lnd uname;
struct sockaddrin lnd addr;
LIST ∗lnd keyval;
struct lnd ssi boot nodeinfo∗lnd ssi;

};� �
The individual elements are:

• lnd nodeid : A unique integer identifying a node, from 0 to (N − 1), whereN is the total number
of nodes in the universe.

• lnd type : A set of bit flags indicating attributes about that node. The most important flags toboot
modules are:

– NT BOOT: Indicates that a node is supposed to be booted.

– NT ME: Indicates that this node is the local node.

– NT ORIGIN: Indicates that this node is the origin node.

– NT WASTE: Indicates that this node should not be used for default scheduling bympirun and
lamexec . For example, nodes marked with this attribute will not be used for “mpirun C
a.out ”.

• lnd ncpus : Number of CPUs on that node.

• lnd bootport : TCP port number used in the startup protocols.

• lnd hname: String name for the node, usually parsed from the boot schema file.

• lnd uname: String username to be used to login on the remote node, or NULL if unnecessary.

• lnd addr : Binary representation of the TCP address of the node.

• lnd keyval : List of key-value pairs parsed from theboot schema file. These key-value pairs
provide an extensible method to obtain module-specific infomration from the boot schema file. The
bhostparse() utility function is typically used to parse boot schema files (see Section2.5.1), and
will fill the lnd keyval list with every “key=value” pair found in the boot schema. For example:� �
inky.cluster.example.com cpu=2
pinky.cluster.example.com cpu=4
blinky.cluster.example.com cpu=4
clyde.cluster.example.com cpu=2 user=jsmith� �

8

Eachstruct lamdnode instance will have itslnd keyval filled with a list of the “key=value”
pairs from the boot schema listed above. Thestruct lamdnode instance forclyde will have
two entries which each of the others will have one. All keys and values are represented as strings.

Although all “key=value” pairs will be parsed bybhostparse() and placed in thelnd keyval
list, commonly used keys include:

– hostname= <host >: Specifies the target node’s name or IP address. The first token on each
line in the boot schema file is implicitly the hostname.

– cpu= <NUM>: Specifies the number of CPUs that LAM may use on the target node.

– user= <username >: Specifies the login name which can be used to remotely login to the
node (if different than the username of process owner).

– prefix= <path >: Specifies the path where LAM binaries are installed on the target node.

– schedule=(yes|no) : Specifies whether this node needs to be scheduled for running jobs
or not.

• lnd ssi : “Extra” information that eachboot module can define. Each module must provide its
own definition for the typelnd ssi boot nodeinfo (but not necessarily before including the
lamnet.h file).

2.3.2 struct psc

This type is returned in aLIST by thehbootparse() function (see Section2.5.2). It contains a list of
argv -style arrays of processes to start on a target node.� �
struct psc{

char ∗∗pscargv;
int4 pscargc;
int4 pscdelay;
int4 pscflags;

};� �
The members are:

• psc argv : NULL-terminated array of command line tokens to start on the target node.

• psc argc : Length ofpsc argv .

• psc delay : Delay this many seconds after starting.

• psc flags : Currently unused; reserved for future expansion.

2.3.3 lam ssi boot proc t

This type is used as an argument toboot API functions, indicating which LAM RTE process to start.� �
typedef enum{

LAM SSI BOOT PROCLAMD,
LAM SSI BOOT PROCRECON,
LAM SSI BOOT PROCWIPE,

9

LAM SSI BOOT PROCMAX
} lam ssi boot proc t;� �
2.4 Global Variables

Several global variables are available to allboot modules. These variables areextern ’ed in<lam-ssi-boot.h> .

2.4.1 int lam ssi boot base server port

This int is defined and set by the TCP startup protocol functions, and is described in Section2.5.12.

2.4.2 int lam ssi boot did

This int is set by theboot SSI initialization function, and will therefore be usable by everyboot API
function (includingopen). It is the debug stream ID specific to theboot SSI modules (see [1] for a descrip-
tion of LAM/MPI debug streams). Ifboot modules do not create their own debug streams, they should use
lam ssi boot did .

Debug streams should be used in conjunction withlam ssi boot verbose . Note, however, than
debug streams should be used with care (and/or “compiled out” with preprocessor directives when not in
use) because even if their output is not displayed, they still invoke a function call and may generate overhead
at run-time.

2.4.3 int lam ssi boot verbose

The lam ssi boot verbose variable will be set by theboot SSI initialization function, and will there-
fore be usable by everyboot API function.

lam ssi boot verbose is used to indicate how many “status” messages should be displayed. This
does not pertain to error messages that the module may need to print – only messages that are superfluous
“what’s going on” kind of messages.

The value of this variable should be interpreted as following:

• Less than zero: do not output any status messages.

• Zero: print minimal amounts of status messages. This typically corresponds to the “-v ” flag on
various LAM commands.

• Greater than zero: print status messages – potentially more than if the value were zero; exact meaning
is left up to the module. A value of 1000 typically corresponds to the “-d ” flag on various LAM
commands.

2.4.4 int lam ssi boot optd

The lam ssi boot opt variable is of typeOPT*. It will be set to a non-NULLvalue after the call to the
boot SSI’s main open call (i.e., before any API functions ofboot modules). It contains the parsed arguments
from the command line. See theall opt(3) man page for details on how to use theOPTtype.

Most boot modules will not need this variable. One of the API functions (described in Section3.4)
receives theOPT* variable as a parameter. If later API functions require information from it, the module
can save a local copy that can be shared throughout the module. The main purpose of this variable is for
utility routines provided by theboot SSI that can be used as API functions, but are not part of individual
modules (described in Section2.5).

10

2.5 Functions

Several common functions are provided to allboot SSI modules.

2.5.1 bhostparse()� �
#include<boot.h>
int bhostparse(char ∗filename,struct lamnode∗∗nodes,int ∗nnodes);� �

Parses a boot schema and returns an array ofstruct lamnode instances.filename is the filename
of the file to parse.nnodes will be allocated and filled by this function (it is the caller’s responsibility to
free thenodes array later);nnodes is set to the length ofnnodes .

bhostparse() will parse all key-value pairs and place them in thelnd keyval member on the
corresponding entries in thenodes array.bhostparse() also sets/clearsNT WASTE depending upon
whether the key-value pairschedule=yes/no has been defined. See section2.3.1for information on
NT WASTE.

This function is typically invoked in theallocate nodes API call (see Section3.5).

2.5.2 hbootparse()� �
#include<boot.h>
int hbootparse(int debug, OPT∗ad,char ∗inet topo,char ∗rtr topo, LIST∗∗proc list);� �

Find the LAM RTE configuration file in the command line parameters and parse it, doing variable
substitution (ifinet topo or rtr topo are non-NULL), and return aLIST of argv arrays containing
LAM RTE processes to start on remote nodes. The default LAM RTE configuration file specifies only a
singlelamd (with some associated command line parameters). Other configurations are also possible (such
as starting multiple processes on the target node).

The returnedLIST contains a list ofstruct psc instances. This list can be processed by theboot
module to actually start the specified process(es) on the target node(s).

If the boot module uses one of the built-in booting algorithms, this function is typically invoked by
thestart rte proc internal API function (see Section3.11) in conjunction with thelam ssi boot -
inet topo() function when starting thelamd RTE process. For example (many details omitted):� �
int lam ssi boot tm start rte proc(struct lamnode∗node, lamssi boot proc t which){

if (which == LAM SSI BOOT PROCLAMD) {
struct psc∗p;
char ∗inet buf = lam ssi boot build inet topo(node, originlamnode, originid)

hbootparse(lamssi boot did, lam ssi boot optd, inetbuf, NULL, &bootlist);
for (p = al top(bootlist); p; p = alnext(bootlist, p)){

/∗ Must not modify the contents of the list items; make duplicates to work with∗/
av cmd = sfhargv dup(p−>pscargv);
ac cmd = p−>pscargc;
remotelaunch(&avcmd, &accmd, node);

}
free(inetbuf);
al free(bootlist);

11

}
}� �
2.5.3 lam deallocate nodes()� �
#include<boot.h>
int lam deallocatenodes(struct lamnode∗∗nodes,int ∗nnodes);� �

Utility function to deallocate an array ofstruct lamnode s. It is not sufficient to simplyfree()
thenodes array; this function is provided because each item in the array may contain additional memory
that must be specifically freed (e.g., the key=value pairs). Upon return from this function,*nodes will be
set toNULL, and*nnodes will be set to 0.

This function is typically invoked from thedeallocate nodes() API function.

2.5.4 lam ssi boot base check priority()� �
int lam ssi boot basecheckpriority(char ∗modulename,int base,int want default,int ∗priority);� �

A utility function that performs some mundane tasks:

• Assignpriority to the base priority.

• If the want default flag is set to 1, setpriority to 75.

• If module name is notNULL and if the environment variableLAMMPI SSI boot NAMEpriority
is set, setpriority to the integer value of that variable.

The end result is thatpriority will have a valid priority assigned to it when the function returns.

2.5.5 lam ssi boot base find boot schema()� �
char ∗lam ssi boot basefind boot schema(OPT∗args);� �

Analyzesargc andargv to find the boot schema and verify that it exists.
Note thatOPT* is an internal LAM type for holding command line parameters. Its use is documented

in theall opt(3) man page.
opt is not modified by this function. The return value will be a string representing the filename of the

found boot schema, orNULL if nothing was found (indicating an error). If nothing is found, an appropriate
error message will be printed.

If an absolute pathname is found, it is used. If a relative pathname is found, it is checked against the
present directory, the$TROLLIUSHOME/etc directory, the$LAMHOME/etc directory, and finally the
LAM $sysconf directory (selected at configuration time).

A lam ssi boot verbose value of one or larger will trigger output to thelam ssi boot did
debug stream.

This function is typically invoked in theparse options API call (see Section3.4).

12

2.5.6 lam ssi boot base find hostname()� �
char ∗lam ssi boot basefind hostname(OPT∗args);� �

This function is used when thelamgrow command was used to invoke the boot SSI. This is because the
lamgrow command does not provide a boot schema file – a single hostname is provided on the command
line for growing the current LAM universe. This function analyzesargc andargv to find a string hostname
or IP address and verify that it exists.

Note thatOPT* is an internal LAM type for holding command line parameters. Its use is documented
in theall opt(3) man page.

opt is not modified by this function. The return value will be a string representing the found host-
name/address orNULL if nothing was found (indicating an error). If nothing is found, an appropriate error
message will be printed.

A lam ssi boot verbose value of one or larger will trigger output to thelam ssi boot did
debug stream.

This function is typically invoked in theparse options API call (see Section3.4).

2.5.7 lam ssi boot base lamgrow()� �
char ∗lam ssi boot baselamgrow(char ∗hostname,struct lamnode∗∗nodes,

int ∗nnodes,int ∗origin);� �
This function is used when thelamgrow command was used to invoke the boot SSI. This is because the

lamgrow command does not provide a boot schema file – a single hostname is provided on the command
line for growing the current LAM universe. This function analyzes the current LAM universe and generates
an array ofstruct lamnode instances based on its contents, to include an instance for the new node to
be booted. Only the entry for the new node will have theNT BOOTflag set.

hostname is the string host name or IP address of the node to be booted.nodes is allocated and filled
by this function (it is the caller’s responsibility to free thenodes array later);nnodes is set to the length
of nodes . The origin argument is filled with the origin node’s ID. Note that it is not necessarily the same
node as the node that is invokinglamgrow .

Depending on howlamgrow was invoked, it is possible that the array ofstruct lamnode instances
may contain entries for “invalid” nodes (see thelamgrow(1) man page for more details). Such entries
will have a node ID ofNOTNODEID, and all their other data will be invalid. Although these nodes must be
skipped by the booting algorithms (all the provided algorithms properly skip them), space must be allocated
for them in all internal arrays and tables.

This function is typically invoked in theallocate nodes API call (see Section3.5).

2.5.8 lam ssi boot base ioexecvp()� �
int lam ssi boot baseioexecvp(char ∗∗cmdv,int showout,char ∗outbuff, int outbuffsize);� �

This function is used to execute a command. It is typically used to execute a command that starts LAM
daemons or starts a proxy process which then starts LAM daemons.

cmdv contains the command to be executed. The function can direct command stdout to buffer and/or
stdout.showout is used to control this. If command stdout is to be directed to output buffer, thenoutbuff
should point to the buffer for stdout data andoutbuffsize should contain size of this buffer.

This function is typically indirectly invoked in thestart application API call (see Section3.10).

13

2.5.9 lam ssi boot build inet topo()� �
char ∗lam ssi boot build inet topo(struct lamnode∗destnode,struct lamnode originnode,

int origin);� �
This function is typically invoked before callinghbootparse() . It examines the command line

arguments (inlam ssi boot optd) and builds a string suitable for replacement as the$inet topo in
LAM RTE configuration files. This string is typically later passed to thehbootparse() function for this
exact purpose.

The string that is returned from this function ismalloc ’ed memory; it must later be freed by the caller.

2.5.10 lam ssi boot do commonargs()� �
int lam ssi boot do commonargs(OPT∗aod,int ∗argc,char ∗∗∗argv);� �

Utility function to handle some mundane argument handling (e.g., adding “-v” and/or “-d” toargv if
they are found inaod). It is typically invoked with theargv of a process to start on a remote node, allowing
“-v” and “-d” to propogate to remote processes.

2.5.11 Built-in Algorithms

Theboot SSI framework provides several generalized algorithms to launch processes across a set of nodes.
These algorithms are generally invoked from within boot module API calls. The algorithms, in turn, will
make callbacks into the module to perform the actual work (e.g., launch a process). The algorithms perform
all the necessary bookkeeping and timing to execute the entire set of tasks as well as exchange all startup
protocol information (if necessary). Note, however, that these functions will all skip nodes that are not either
not marked with theNT BOOTflag or have a node ID that is equal toNOTNODEID.

Note that the use of these functions is not mandatory. They are simply provided as drop-in algorithms
so that modules do not need to write their own.

Section1.2generally describes the available algorithms. Their names are long because of the SSI prefix
rule. Each of the functions below have the same signature:� �
int algorithm(struct lamnode∗nodes,int nnodes,int want startupprotocol,

lam ssi boot proc t which, int ∗num started);� �
The arguments are as follows:

• IN: nodes is an array of nodes to boot across.

• IN: nnodes is the length of thenodes array.

• IN: want startup protocol is a flag indicating whether the function should invoke the module’s
startup protocol functions at the apporpriate times during the boot process. It should only be set to 1
when booting LAM daemons; 0 all other times.

• IN: which is an enum indicating what kind of process to launch (see Section2.3.3).

• OUT: num started will be filled in by the algorithm indicating how many nodes were actually
booted.

The provided algorithm functions are:

14

• lam ssi boot base alg linear() : Simple linear process-launching algorithm.

• lam ssi boot base alg linear windowed() : Linear algorithm with a sliding window for
the startup protocols. This is especially well-suited for boot environments where remote process
invocation latency can be hidden by not waiting for a remote action to finish before progressing onto
the next action. This algorithm guarantees that there will never be more thanN outstanding agents
waiting to exchange startup protocol information.

This algorithm is especially relevant if the built-in TCP startup protocols are used (described in Sec-
tion 2.5.12), because at least some operating system TCP stacks only allow a limited number of clients
to be pending on a listening socket. Hence, using the windowed algorithm will guarantee that that
operating system limit is never exceeded.

The default window value is 5, and can be changed by setting theboot base linear win size
SSI run-time parameter.

• lam ssi boot base alg tree() : N -way tree-based process-launching algorithm (N is deter-
mined at run-time). This algorithm will first launch a tree of “helper” executables – one on each
interior node (and potentially exterior nodes) in the tree. After the helper tree is established, the target
LAM RTE process will be launched, and any necessary startup information will be exchanged.

Note: This function is not yet implemented.

• lam ssi boot base alg thread() : Same as the tree-based algorithm, except that each inte-
rior node will use multiple threads to perform its actions and may invoke theboot API functions
multiple times simultaneously within a single process.boot modules that use the thread algorithm
must not only be thread safe, but also provide a high degree of concurrency when its API calls are
simultaneously invoked with orthogonal sets of parameters.

Note: This function is not yet implemented.

2.5.12 TCP-Based Startup Protocols

Most (if not all)boot modules will be able to use the generalized TCP startup protocol functions since TCP
is likely able to be used for such meta-information exchanges regardless of the underlying communication
network. If TCP connectivity is not available, theboot module will need to provide startup protocols itself.

These functions eliminate the need for mostboot modules to provide their own functions for several of
theboot API calls. Since these functions can be used for the corresponding API functions, only their names
are listed below – their signatures and behavior are described in Section3:

• lam ssi boot base open srv connection()

• lam ssi boot base send lamd info()

• lam ssi boot base receive lamd info()

• lam ssi boot base close srv connection()

• lam ssi boot base send universe info()

• lam ssi boot base receive universe info()

15

Note that these functions are subject to operating system limits such as how many pending clients can
be held on a listening socket. Some operating systems have a surprisingly low backlog limit. Modules that
utilize booting algorithms that could have multiple clients simultaneously calling the server back should be
aware of this limitation, and either use multiple servers or some kind of windowed protocol (e.g., the linear
windowed algorithm described in Section2.5.11).

The information that must be exchanged is:

• From thelamd to lamboot , send the following:

– UDP port number that thelamd will use for normal operations

– Any other information required to call thelamd back to pass the universe information

• From lamboot to the lamd , loop sending the following information to eachlamd in the LAM
universe:

– Integer node identifier of thatlamd (from 0 to N − 1), or NOTNODEIDif it is not a valid node

– Either the byte-packed IP address of thelamd or the string hostname of thelamd

– Integer UDP port number that thelamd is listening on

– Integer (bit flags) for the node that thelamd is running on (see Section2.3.1)

– Integer number of CPUs that thelamd thinks that the node has

3 boot SSI Module API

This is version 1.0.0 of theboot SSI module API.
Each boot SSI module must export astruct lam ssi boot 1 0 0 namedlam ssi boot -

<name> module . This type is defined in Figure1. This struct contains a small number of items,
one of which is a function pointer that may return a pointer to thestruct shown in Figure2.� �
typedef struct lam ssi boot 1 0 0 {

lam ssi 1 0 0 t lsb metainfo;

/∗ Initialize / finalize functions∗/

lam ssi boot init fn t lsb init;
lam ssi boot finalize fn t lsb finalize;

} lam ssi boot 1 0 0 t;� �
Figure 1: Theboot type for exporting the initialization and finalization API function pointers.

The majority of the elements in Figures1 and2 are function pointer types; each is discussed in detail
below. When describing the function prototypes, the parameters are marked in one of three ways:

• IN: The parameter is read – but not modified – by the function.

• OUT: The parameter, or the element pointed to by the parameter may be modified by the function.

• IN/OUT: The parameter, or the element pointed to by the parameter is read by, and may be modified
by the function.

16

� �
typedef struct lam ssi boot actions1 0 0 {

/∗ Boot API function pointers∗/

lam ssi boot parseoptionsfn t lsbaparseoptions;
lam ssi boot allocatenodesfn t lsbaallocatenodes;
lam ssi boot verify nodesfn t lsbaverify nodes;
lam ssi boot prepareboot fn t lsbaprepareboot;
lam ssi boot start rte procsfn t lsbastart rte procs;
lam ssi boot deallocatenodesfn t lsbadeallocatenodes;

/∗ Algorithm callback functions (optional)∗/

lam ssi boot start applicationfn t lsbastart application;
lam ssi boot start rte proc fn t lsbastart rte proc;

/∗ Startup protocol: sending individual lamd info∗/

lam ssi boot opensrv connectionfn t lsbaopensrv connection;
lam ssi boot sendlamd info fn t lsbasendlamd info;
lam ssi boot receivelamd info fn t lsba receivelamd info;
lam ssi boot closesrv connectionfn t lsbaclosesrv connection;

/∗ Startup protocol: broadcasting universe info∗/

lam ssi boot senduniverseinfo fn t lsbasenduniverseinfo;
lam ssi boot receiveuniverseinfo t lsba receiveuniverseinfo;

} lam ssi boot actions1 0 0 t;� �
Figure 2: Theboot type for exporting the main action API function pointers.

Function prototypes are also marked as one of three classes:

• Boot API: This function is part of the set of functions that start processes on nodes. This function will
be invoked by the LAM infrastructure.

• Algorithm Callback: This function is invoked as a callback from the LAM-provided boot algorithm
function frameworks. Although these functions serve as useful abstractions, they are only required if
the LAM-provided boot algorithms are used.

• Protocol: This function is part of the set of functions that exchange startup protocol information.

boot module writers looking for insight into how the API is used should also look at the source code for
lamboot , recon , andwipe .

17

3.1 Data Item: lsb meta info

lsb meta info is the SSI-mandated element contains meta-information about the module. See [2] for
more information about this element.

3.2 API Function Call: lsb init

• Type: lam ssi boot init fn t� �
typedef constlam ssi boot actionst ∗(∗lam ssi boot init fn t)

(lam ssi boot location t where,int ∗priority);� �
• Arguments:

– IN: where is anenum indicating where this module is being initialized. The value will be one
of the following:

∗ LAMSSI BOOTLOCATIONROOT: The module is being invoked on the root of the boot.
This typically means a user-level command such aslamboot , recon , wipe , or lamgrow .

∗ LAMSSI BOOTLOCATIONINTERIOR: This module is being invoked in an interior node
of the boot. This may mean that a hierarchical boot algorithm is being used, and that this
process is a “helper” launching application. It directly implies that this node has both a
parent and one or more children.

∗ LAMSSI BOOTLOCATIONLEAF: All other cases. This includes the LAM daemon itself
(see below).

– OUT: priority is the priority of this module, and is used to choose which module will be
selected from the set of available modules at run time.

• Return value: EitherNULLor a pointer to thestruct shown in Figure2.

• Description: If the module wants to be considered for selection, it must return a pointer to thestruct
shown in Figure2 that is filled with relevant data and assign an associated priority topriority .
See [2] for more details on the priority system and how modules are selected at run time.

If the module does not want to be considered during the negotiation for this communicator, it should
returnNULL(the value inpriority is then ignored).

Note that the LAM daemon itself must also initialize theboot SSI and come to the same selection
conclusion as its peers. Although the LAM daemon will not use any ofboot API functions to launch
remote processes, it will use the startup protocol functions to exchange location information with a
peer.

3.3 API Function Call: lsb finalize

• Type: lam ssi boot finalize fn t� �
typedef int (∗lam ssi boot finalize fn t)(void);� �

• Arguments: None.

• Return value: Zero on success, nonzero otherwise.

18

• Description: Finalize the use of this module. It is the last function to be called in the scope of this
module’s selection before the module close function. It should release any resources allocated during
the life of this scope.

3.4 API Function Call: lsba parse options

• Type: lam ssi boot parse options fn t� �
typedef int (∗lam ssi boot parseoptionsfn t)(OPT∗args,int bhostschemaargs);� �

• Arguments:

– IN: args contains the command line arguments.

– IN: bhost schema args is 1 if theargc /argv pair contains a boot schema filename (e.g.,
from lamboot , recon , andwipe), and 0 if the pair contains a string hostname/IP address
(e.g., fromlamgrow).

• Return value: Zero on success, nonzero otherwise.

• Description: The module can examine the command line parameters (see theall opt(3) man page
for details on how to use theOPTtype).

This API function typically makes use of the two utility functionslam ssi boot base find -
boot schema() and lam ssi boot base find hostname() (described in Sections2.5.5
and2.5.6, respectively).

3.5 API Function Call: lsba allocate nodes

• Type: lam ssi boot allocate nodes fn t� �
typedef int (∗lam ssi boot allocatenodesfn t)(struct lamnode∗∗nodes,int ∗nnodes,int ∗origin);� �

• Arguments:

– OUT: nodes is a pointer to astruct lamnode that this function is expected to fill with an
array ofstruct lamnode s.

– OUT: nnodes is a pointer to anint that this function is expected to fill with the length of
nodes array.

– OUT: origin is a pointer to anint that this function is expected to fill with an index into the
nodes array representing the element for this node.

• Return value: Zero on success, nonzero otherwise.

• Description: Create and fill in alamnode structure for each node to be booted. There are few
requirements on the completeness of the structure, but all unused fields should be zeroed out before
returning. Additionally, thelnd type field for the origin member should have theNT ORIGIN and
NT MEflags set. Additionally, the total number of nodes must be correct.

Note that this function’s actions may be determined by the value of thebhost schema args flag
to theparse options() API call.

19

Thedeallocate nodes() API call should later be used to free the memory associated with the
nodes list.

This API function typically makes use of the two utility functionsbhostparse() andlam ssi -
boot base lamgrow() (described in Sections2.5.1and2.5.7, respectively).

3.6 API Function Call: lsba verify nodes

• Type: lam ssi boot verify nodes fn t� �
typedef int (∗lam ssi boot verify nodesfn t)(struct lamnode∗nodes,int nnodes);� �

• Arguments:

– IN: nodes is the array ofstruct lamnode s returned by theallocate nodes() API
call.

– IN: nnodes length of thenodes array.

• Return value: Zero on success, nonzero otherwise.

• Description: Last sanity check on the node list. If possible, check the node list for conditions such as
(but not limited to):

– Existence of node (e.g., try to resolve IP names)

– Permission to execute on node

– Ensure that the local node is in the list

– If the number of nodes is greater than one, ensure that the local address is not 127.0.0.1 if using
standard IP-passing scheme

After this call, lamnodes should be filled in with enough information for theboot SSI to contact
each of the target notes. As such, it needs to determine which entry in the array is the origin (this may
have been determined by theallocate nodes() API call, but in some cases, it is not possible to
determine it until here inverify nodes()).

3.7 API Function Call: lsba prepare boot

• Type: lam ssi boot prepare boot fn t� �
typedef int (∗lam ssi boot prepareboot fn t)(void);� �

• Arguments: None.

• Return value: Zero on success, nonzero otherwise.

• Description: Perform any setup work that might be needed by thestart rte procs() API call,
but that only needs to be done once. For example, on BProc architectures,boot modules may generate
theargv arrays for starting up the LAM daemons.

20

3.8 API Function Call: lsba start rte procs

• Type: lam ssi boot start rte procs fn t� �
typedef int (∗lam ssi boot start rte procsfn t)

(struct lamnode∗nodes,int nnodes, lamssi boot proc t which, int ∗num started);� �
• Arguments:

– IN: nodes is the array of nodes to start processes on

– IN: nnodes is the length of thenodes array.

– IN: which is anenum specifying which LAM RTE process to start.

– OUT: num started is a pointer to anint indicating how many processes were successfully
started.

• Return value: Zero on success, nonzero otherwise.

• Description: Takes anodes array and starts a LAM RTE process on each node.

The function must only launch on nodes that have theNT BOOTflag set on their type and do not have
a node ID ofNOTNODEID. All other nodes must be skipped.

Note that there is both a return code from this function (indicating overall success or failure) and
a separate count of how many processes were started. This is for the case wheresomeprocesses
may start properly, but others fail. Thenum started argument tells the caller how many processes
now need to be cleaned up. Thenodes array can be examined to find out exactly which nodes
were successfully booted (NT BOOTmust be reset on thelnd type of nodes that were successfully
started).

If any of the LAM-provided boot algorithms are used, this is the function that typically invokes them.

3.9 API Function Call: lsba deallocate nodes

• Type: lam ssi boot deallocate nodes fn t� �
typedef int (∗lam ssi boot deallocatenodesfn t)(struct lamnode∗∗nodes,int ∗nnodes);� �

• Arguments:

– IN/OUT: nodes is an array of nodes.

– IN/OUT: nnodes is the length of thenodes array.

• Return value: Zero on success, nonzero otherwise.

• Description: Clean up any memory associated with the node allocation step. Although not required,
modules are encouraged to resetnodes andnnodes to NULL and 0, respectively, when the function
returns. This function will be called only after the nodes information is no longer needed. This
function typically invokeslam deallocate nodes() (see Section2.5.3).

21

3.10 Algorithm Callback Function Call: lsba start application

• Type: lam ssi boot start application fn t� �
typedef int (∗lam ssi boot start applicationfn t)

(char ∗∗∗argv,int ∗argc,int num procs,struct lamnode∗node);� �
• Arguments:

– IN: argv is an array ofargv -style command line arguments; i.e., an array of commands to
start.

– IN: argc is an array of indicating how long each array is in theargv array.

– IN: num procs is the length of the first dimension ofargv .

– IN: node is a pointer to a singlestruct lamnode indicating which node to start on.

• Return value: Number of processes successfully started.

• Description: Launch the specified processes on the specified node. Return the number of processes
successfully booted. Hence, if the return value is equal tonum procs , the function completed
successfully. There is no mandate that processes be started in the order they exist inargv .

The return value is explicitly vague so that modules can get “even more parallelism” if they happen
to use a remote startup agent that provides a high degree of parallelism.

It is incorrect to use this function directly from a boot algorithm to launch a LAM RTE process (e.g.,
lamd , recon , wipe). Use thestart rte proc() API function instead. This function should
only be used by a boot algorithm to start up other instances of the boot algorithm (i.e., “helper”
executables).

3.11 Algorithm Callback Function Call: lsba start rte proc

• Type: lam ssi boot start rte proc fn t� �
typedef int (∗lam ssi boot start rte proc fn t)

(struct lamnode∗node, lamssi boot proc t which);� �
• Arguments:

– IN: node is a pointer to a singlestruct lamnode indicating where the process should be
started.

– IN: which is anenum indicating what kind of LAM RTE process should be started (see Sec-
tion 2.3.3).

• Return value: Zero on success, nonzero otherwise.

• Description: Start a LAM RTE process on the specified node. This can use thestart application()
API function (in fact, it is encouraged).

This function exists because the boot algorithm should not need to know any of the details about
starting a LAM RTE process. This function provides an upcall to give the boot algorithm an abstract
mechanism to launch a LAM RTE process.

22

3.12 Protocol Function Call: lsba open srv connection

• Type: lam ssi boot open srv connection fn t� �
typedef int (∗lam ssi boot opensrv connectionfn t)(struct lamnode∗nodes,int nnodes);� �

• Arguments:

– IN: nodes is a pointer to an array ofstruct lamnode s that are expected to connect to this
process.

– IN: nnodes is the length of thenodes array.

• Return value: Zero on success, nonzero otherwise.

• Description: Open a private, server-side communication endpoint (i.e., the channel will only be used
within the boot SSI) that the LAM daemon will connect back to. This function will only be called
once per instance of the module, meaning that if you useBOOTLINEAR, it will only be called once
(on the origin node) but onBOOTTREEit may be called multiple times (one for each helper process).

Note that the addresses given innodes may or may not be the actual clients that connect. There
are some valid network architectures where connections may seem to come from addresses other
than what are listed in thenodes array. It is suggested toboot module authors that unless the special
“boot promiscuous mode” is enabled in LAM, only accept connections from the addresses listed in the
nodes array (when possible). However, when “promiscuous mode” is enabled, accept connections
from anyone, and rely on the connector to identify themselves in the boot protocol.

3.13 Protocol Function Call: lsba send lamd info

• Type: lam ssi boot send lamd info fn t� �
typedef int (∗lam ssi boot sendlamd info fn t)(OPT∗args,int dli port);� �

• Arguments:

– IN: args contains the command line parameters.

– IN: dli port is the UDP port number that the local LAM daemon is listening on for normal
operations.

• Return value: Zero on success, nonzero otherwise.

• Description: Open a connection back to the booting agent, send relevant location information (e.g.,
the LAM’s UDP port number), and then closes the connection. It is assumed that the information
necessary to connect back to the invoking agent is either in the command line arguments (see the
all opt(3) man page for details on how to access theOPTtype) or in the environment.

3.14 Protocol Function Call: lsba receive lamd info

• Type: lam ssi boot receive lamd info fn t� �
typedef int (∗lam ssi boot receivelamd info fn t)(struct lamnode∗nodes,int nnodes);� �

23

• Arguments:

– IN/OUT: nodes is a pointer to an array ofstruct lamnode s that were successfully started.

– IN: nnodes is the length of thenodes array.

• Return value: Zero on success, nonzero otherwise.

• Description: Accept a connection from a LAM daemon and receive the information it sends back. The
function is provided with an array ofstruct lamnode entries, one of which will correspond to the
LAM daemon that will be contacting it. It is up to the function to figure out which one is responding.
When finished, close the connection. A new connection is used to broadcast the information at a later
time.

In the case that only one LAM daemon can be communicating with the function, (for example, when
the boot algorithm is linear), thennnodes will one and the job of searching is much easier.

3.15 Protocol Function Call: lsba close srv connection

• Type: lam ssi boot close srv connection fn t� �
typedef int (∗lam ssi boot closesrv connectionfn t)(void);� �

• Arguments: None.

• Return value: Zero on success, nonzero otherwise.

• Description: Close the channel opened during theopen srv connection() API function.

3.16 Protocol Function Call: lsba send universe info

• Type: lam ssi boot send universe info fn t� �
typedef int (∗lam ssi boot senduniverseinfo fn t)(struct lamnode∗nodes,int nnodes,int which);� �

• Arguments:

– IN: nodes is an array of nodes that the information needs to be broadcast to.

– IN: nnodes is the length of thenodes array.

– IN: which is an index into thenodes array indicating which node to connect and send the
information to.

• Return value: Zero on success, nonzero otherwise.

• Description: Connect to LAM daemon and send the union of all the LAM location information (i.e.,
send information about all the peer LAM daemons that comprise the LAM universe).

This function opens a connection to a target LAM daemon, sends the information, and disconnects.

24

3.17 Protocol Function Call: lsba receive universe info

• Type: lam ssi boot receive universe info t� �
typedef int (∗lam ssi boot receiveuniverseinfo t)(struct lamnode∗∗universe,int ∗universesize);� �

• Arguments:

– OUT: universe is a pointer to an (as yet unallocated) array of information that will be re-
ceived.

– OUT: universe size is a pointer to anint that will be filled to be the length of the
universe array.

• Return value: Zero on success, nonzero otherwise.

• Description: After the LAM daemon communicates its port information to the booting process, it
waits for information about the entire run-time universe. This function is where it waits for that
information. It returns the information returned about all neighbors.

Similar to thereceive lamd info() API function, this function should accept the connection,
read the information, and close the connection when finished reading.

4 To Be Determined

Things that still need to be addressed:

• Tree algorithm needs to be implemented.

• Thread algorithm needs to be implemented.

• It is likely that future versions of this API will need to adjust some of the API calls to allow for the
tree and thread algorithms – allowing arrays of lamd and universe info to be passed, etc.

5 Acknowledgements

This work was supported by a grant from the Lily Endowment National Science Foundation grant 0116050,
and used research and development resources of the University of Pennsylvania Liniac Project.

References

[1] Brian Barrett, Jeff Squyres, and Andrew Lumsdaine.LAM/MPI Design Document. Open
Systems Laboratory, Pervasive Technology Labs, Indiana University, Bloomington, IN. See
http://www.lam-mpi.org/ .

[2] Jeffrey M. Squyres, Brian Barrett, and Andrew Lumsdaine. The system services interface (SSI) to
LAM/MPI. Technical Report TR575, Indiana University, Computer Science Department, 2003.

25

	Overview
	General Scheme
	Starting LAM RTE Executables
	Exchanging Startup Protocols

	Booting Algorithms
	Error Handling

	Services Provided by the boot SSI
	Header Files
	Module Selection Mechanism
	Types
	struct lamnode
	struct psc
	lam_ssi_boot_proc_t

	Global Variables
	int lam_ssi_boot_base_server_port
	int lam_ssi_boot_did
	int lam_ssi_boot_verbose
	int lam_ssi_boot_optd

	Functions
	bhostparse()
	hbootparse()
	lam_deallocate_nodes()
	lam_ssi_boot_base_check_priority()
	lam_ssi_boot_base_find_boot_schema()
	lam_ssi_boot_base_find_hostname()
	lam_ssi_boot_base_lamgrow()
	lam_ssi_boot_base_ioexecvp()
	lam_ssi_boot_build_inet_topo()
	lam_ssi_boot_do_common_args()
	Built-in Algorithms
	TCP-Based Startup Protocols

	boot SSI Module API
	Data Item: lsb_meta_info
	API Function Call: lsb_init
	API Function Call: lsb_finalize
	API Function Call: lsba_parse_options
	API Function Call: lsba_allocate_nodes
	API Function Call: lsba_verify_nodes
	API Function Call: lsba_prepare_boot
	API Function Call: lsba_start_rte_procs
	API Function Call: lsba_deallocate_nodes
	Algorithm Callback Function Call: lsba_start_application
	Algorithm Callback Function Call: lsba_start_rte_proc
	Protocol Function Call: lsba_open_srv_connection
	Protocol Function Call: lsba_send_lamd_info
	Protocol Function Call: lsba_receive_lamd_info
	Protocol Function Call: lsba_close_srv_connection
	Protocol Function Call: lsba_send_universe_info
	Protocol Function Call: lsba_receive_universe_info

	To Be Determined
	Acknowledgements
	References

