Boot System Services Interface (SSI) Modules
for LAM/MPI
API Version 1.0.0 / SSI Version 1.0.0

Jeffrey M. Squyres
Brian Barrett
Andrew Lumsdaine
http://www.lam-mpi.org/

Open Systems Laboratory
Pervasive Technologies Labs
Indiana University
CS TR576

August 4, 2003

1l

pervasivetechnologylabs

AT INDIANA UNIVERSITY

http://www.lam-mpi.org/

Contents

1 Overview 4
1.1 General Scheme. 4
1.1.1 Starting LAM RTE Executables, 4
1.1.2 Exchanging Startup Protocols., 5

1.2 Booting Algorithms. e 5
1.3 ErrorHandling 6
2 Services Provided by théboot SSI 7
2.1 HeaderFiles e 7
2.2 Module Selection Mechanism 7
2.3 TYPES . . . e e e 7
2.3.1 struct lamnode 8
2.3.2 SHUCL PSC . . o e e e e e e e 9
2.3.3 lam_ssi _boot proc t 9

2.4 Global Variables 10
2.4.1 int lam _ssi _boot _base _server _port 10
2.4.2 int lam _ssi boot did 10
243 int lam _ssi _boot verbose 10
244 int lam _ssi boot optd 10

25 FUNCLONS. e 11
2.5.1 bhostparse() e 11
2.5.2 hbootparse() e e 11
2.5.3 lam deallocate nodes() 12
2.5.4 lam _ssi _boot _base check _priority() 12
255 lam _ssi _boot _base find _boot schema() 12
2.5.6 lam_ssi _boot _base find _hostname() 13
25.7 lam_ssi _boot _base Jlamgrow() 13
2.5.8 lam_ssi _boot _base _ioexecvp() 13
259 lam_ssi _boot _build _inet topo(), 14
2.5.10 lam _ssi _boot .do_commonargs() 14
2.5.11 Built-in Algorithms. e 14
2.5.12 TCP-Based Startup Protocols. 15

3 boot SSI Module API 16
3.1 Dataltemisb meta_info 18
3.2 APIFunction Callisb _init 18
3.3 API Function Callisb finalize 18
3.4 APl Function Callisba _parse _options, 19
3.5 APIFunction Callisba _allocate nodes 19
3.6 API Function Callisba _verify nodes 20
3.7 API Function Callisba _prepare boot 20
3.8 API Function Callisba _start rte procs 21
3.9 API Function Callisba _deallocate nodes 21
3.10 Algorithm Callback Function Callsba _start _application 22
3.11 Algorithm Callback Function Callsba _start rte proc 22
3.12 Protocol Function Callsba _open _srv _connection 23

3.13 Protocol Function Callsba _send _lamd _info
3.14 Protocol Function Callsba _receive _lamd_.nfo

3.15 Protocol Function Callsba _close _srv _connection

3.16 Protocol Function Callsba _send _universe _.info

3.17 Protocol Function Callsba _receive _universe _info
4 To Be Determined
5 Acknowledgements

References

25

25

25

1 Overview

Before reading this document, readers are strongly encouraged to read the general LAM/MPI System Ser-
vices Interface (SSI) overviewd]). This document uses the terminology and structure defined in that
document.

Theboot SSI kind is used to start a LAM universe. Its primary responsibility is to start processes on
local and remote nodes that either will constitute the LAM run-time environment (RTE) or function outside
the LAM RTE.

The most commonly understood paradigm for this is usslg or ssh to start processes on remote
nodes. However, there are many other environments where tsginggsh is superfluous, not possible, or
subverts other RTEs. Examples include (but are not limited to):

e Batch queuing systems. PBSor example, has the Task Management (TM) API that can be used for
launching processes on nodes that the job owns. Indeed, using TM instesid/eEh will allows
PBS to guarantee clean up when a job is done and to provide better accounting of resources. This
same principle generally holds true for other batch queuing systems as well.

e BProc systems. BProc clusters use multiple machines to emulate a single, large system. As such, there
is really only one “machine”, and usingh /ssh not only “seems odd” in this situation, it actually
creates problems. Using the native BProc-based controls is a much better fit.

e Condor? Condor already has an RTE with extensive process control mechanisms; there is no need to
usersh /ssh in such environments.

e Globus® Globus is used to connect multiple sites; usisf /ssh may not be possible between
them. Globus also has an RTE with extensive process control mechanisms that should be used instead
of rsh /ssh .

Hence, theboot SSI abstracts the process of starting LAM RTE processes on local and remote nodes
and provides and interface such that different RTEs can provide modules for “native” LAM booting in each
environment.

1.1 General Scheme
There are actually two components of theot SSI module: starting LAM RTE processes and executing a
startup protocol.

1.1.1 Starting LAM RTE Executables

Theboot SSI is used in the following LAM executables:

e lamboot : Starts up a set of “LAM daemons” (each of which may be one or multiple processes) on
a hode.

e lamgrow : Expand a currently-running LAM universe by adding another “LAM daemon” on a remote
node.

1Seehttp://www.openpbs.org/
2Seehttp:/iwww.cs.wisc.edu/condor/
3Seehttp://mww.globus.org/

e recon : Executes a test program on a set of hodes to verify functionality.

e wipe : Forcibly shut down a LAM RTE by executing the LAM commatkll on a set of nodes.

The sequence dboot API calls when starting LAM RTE executables on remote nodes is listed in
Tablel.

Time Booting agent
open _module()

init()

Module is selected
parse _options()
allocate _nodes()
verify _nodes()
prepare _boot()

start _rte _procs()
Launch RTE procs on remote nodgs
f LAM-provided algorithm used:
9.1 | start _rte _proc()

9.2 | start _rte _application()
10 | deallocate _nodes()

11 | finalize()

12 | close _module()

=

O©oOoO~NO O WN

Table 1. Sequence difoot API calls over the life of a selected module (excluding the startup protocols).
Steps 9.1 and 9.2 are only invoked if one of the LAM-provided boot algorithms is used. All of step 9 will
be repeated for as many nodes need to be booted.

1.1.2 Exchanging Startup Protocols

lamboot andlamgrow must exchange information to make the newly-spawned LAM daemons aware of
all of its peers. This is what is referred to as “executing the startup protocols.” The startup protocols are
only necessary when starting LAM daemons on remote nagesn andwipe do not use these startup
protocols.

The booting agent will start one or more LAM daemons. Each of these newly-spawned LAM daemons
will connect back to the booting agent and send its location information (e.qg., its UDP port). The booting
agent will gather all of this information and, once all the LAM daemons have reported in, will connect back
to each of them and send the union of all the information. The union represents the entire LAM universe,
and is how the LAM daemons become aware of their peers. Padtews this sequence of events.

1.2 Booting Algorithms

Eachboot module is responsible for launching LAM executables on remote nodes. The algorithm used to
start execution over a set of nodes is up to the module; a module can provide its own functionality or use one
of the LAM-provided generic algorithm frameworks. The LAM-provided algorithm frameworks provide all
the structure and bookkeeping necessary to launch across a set of nodes (including error detection).

Time Booting agent LAM daemon

1 open _srv _connection()

2 Launch remote LAM daemon

3 receive _lamd _info() send _lamd _info()

4 close _srv _connection()

5 send _universe _info() receive _universe _info()

Table 2. Sequence dfoot API calls during the startup protocols for one LAM daemon. If more than one
LAM daemon was booted, steps 3 and 5 would be repeated for each.

If a module chooses to utilize the built-in algorithms, it provides function pointers for callbacks before
invoking the algorithm function. The algorithm function will then iterate over all nodes in the set, invoking
the module’s callback functions to launch executables on remote nodes.

The callback functions required by the provided algorithms are markeAlgerithm Callback” and
are described in Sectid(pagel6). If a module chooses not to use these algorithms, the callback functions
do not need to be provided, ahMJLL should be specified for these function pointers.

The following generic algorithm frameworks are provided in LAM/MPI:

e Linear: A linear approach is used to launch a set of processes: each process is individually started
and, if requested, the startup protocols are executed. The next process is not started until the current
process has been fully established. This is the simplest algorithm.

e Linear / windowed: Well-suited for remote agents that do not need to wait for remote processes to
complete launching, this algorithm uses a linear approach with a sliding window for remote process
callbacks — never allowing more tha¥i callbacks to be outstanding at any given time. This algo-
rithm is typically only useful for launching LAM daemons (i.e., processes that require callbacks to
the booting agent) when hiding the latency involved in remote launching and/or startup protocols is
noticeable, and will fall through to the normal linear algorithm if startup protocols are not required.

e Tree: A tree-based approach is used to launch a set of processes. Interior nodes in the tree will have
“helper” processes launched on them in addition to the target RTE process (the “helper” is part of
theboot SSI framework and does not need to be provided by the module). The helper process will
launch more helpers and/or target RTE processes. The out degree of each node is determined at run
time. Note that the tree algorithm is still linear at each node — even thdughildren processes will
be started, the same general linear algorithm is followed (wait for each process to “fully start” before
starting the next one).

Note: As of this writing, the tree algorithm has not yet been implemented.
e Thread: Same as the tree algorithm, except that multiple threads are usdshaar®iSI API calls
may be overlapped. The big difference between thread and tree tsoba® S| modules that support

the thread algorithm must not only be thread safe, but also provide a high level of concurrency when
its API calls are simultaneously invoked with orthogonal sets of parameters.

Note: As of this writing, the thread algorithm has not yet been implemented.

1.3 Error Handling

Any errors that occur within API functions are expected to be handled by that API call, to include outputting
error messages. Returning failure statuses from API calls will generally propagate up to the top-level and
cause an overall failure, unless otherwise specified.

6

2 Services Provided by théboot SSI

Several services are provided by theot SSI that are available to @lbot modules.

2.1 Header Files

The following header files must be included (in order) in all module source files that want to use any of the
commonboot SSI services described in this document:

#include <lam—ssi.h>
#include <lam—ssi—boot.h>

Both of these files are included in the same locatgirare/ssi/include . If using GNU Automake
and thgop _lam _srcdir macro as recommended if]] the following can be added to tAeM CPPFLAGS
macro (remember thatAM BUILDING must be defined to be 1):

AM _CPPFLAGS =\
—I$(top_lam_builddir)/share/include
—I$(top_lam_srcdir)/share/include
—I$(top_lam_srcdir)/share/ssi/include

All three flags are necessary to obtain the necessary header files (note that the build directory is explicitly
included in order to support VPATH builds properly, even though it will be redundant in non-VPATH builds).

2.2 Module Selection Mechanism

The selection of whiclboot SSI module to use persists through the life of the LAM universe. This is not
only goverend by the fact that the LAM daemons will makeoat module selection when initially launched
and keep using that selection until the end of the universe; it simply does not make sense to chiangie the
module selection after the LAM universe has been established.

Hence, since all LAM processes will only exist within the timeframe that the LAM universe, the scop of
theboot module selection is the life of the process (in the case of the LAM daemon, this coincides with the
life of the universe). As such, there will only ever be one module selected during a given process. Selection
typically occurs during the initialization of the process. All unselected modules will immediately have their
finalize API function invoked (if their initialize API function was invoked), followed by their close function
(if provided). They will then be ignored for the duration of the process.

No LAM-provided communication is available betwebaot modules of peer processes because by
definition, there is no LAM run-time environment when @t modules are initialized. Hence, selection
consensus must be able to be achieved independently, or utilize communication channels that are provided
by the underlying boot mechanism.

boot module authors should be particularly careful about using environment variables to communicate
values between modules. Some underlying boot mechanisms will automatically copy the environment to
the remote process (e.g., TM/PBS), but others may not sly./ssh).

2.3 Types
Some types are used in different API calls and throughouibtiot SSI.

2.3.1 struct lamnode

This type is used to describe nodes in the LAM universe. It is prototypethmnet.h>

struct lamnode{
int4 Ind_nodeid;
int4 Ind_type;
int4 Ind_ncpus;
int Ind_bootport;
char xInd_hname;
char xInd_uname;
struct sockaddrin Ind_addr;
LIST xInd_keyval;
struct Ind_ssiboot nodeinfoxInd_ssi;

The individual elements are:

e Ind _nodeid : A unigue integer identifying a node, from 0 t&/(— 1), whereN is the total number
of nodes in the universe.

e Ind _type : A set of bit flags indicating attributes about that node. The most important fldgsto
modules are:

NT_BOOT Indicates that a node is supposed to be booted.
NT_ME Indicates that this node is the local node.
NT_ORIGIN: Indicates that this node is the origin node.

NT_WASTEIndicates that this node should not be used for default schedulimgpyin and
lamexec . For example, nodes marked with this attribute will not be used rfigpifun C
a.out ”

e Ind _ncpus : Number of CPUs on that node.

e Ind _bootport : TCP port number used in the startup protocols.

e Ind _hname: String name for the node, usually parsed from the boot schema file.

e Ind _uname: String username to be used to login on the remote node, or NULL if unnecessary.
e Ind _addr : Binary representation of the TCP address of the node.

e Ind keyval : List of key-value pairs parsed from th®ot schema file. These key-value pairs
provide an extensible method to obtain module-specific infomration from the boot schema file. The
bhostparse() utility function is typically used to parse boot schema files (see Se2tmd), and
will fill the Ind _keyval list with every “key=value” pair found in the boot schema. For example:

inky.cluster.example.com cpu=2
pinky.cluster.example.com cpu=4
blinky.cluster.example.com cpu=4
clyde.cluster.example.com cpu=2 user=jsmith

Eachstruct lamdnode instance will have iténd _keyval filled with a list of the “key=value”
pairs from the boot schema listed above. Bteict lamdnode instance forclyde will have

two entries which each of the others will have one. All keys and values are represented as strings.

Although all “key=value” pairs will be parsed Hyhostparse() and placed in théind _keyval
list, commonly used keys include:

— hostname= <host >: Specifies the target node’s nhame or IP address. The first token on each

line in the boot schema file is implicitly the hostname.

cpu= <NUNb: Specifies the number of CPUs that LAM may use on the target node.

node (if different than the username of process owner).

or not.

user= <username >: Specifies the login name which can be used to remotely login to the

prefix= <path >: Specifies the path where LAM binaries are installed on the target node.
schedule=(yes|no) . Specifies whether this node needs to be scheduled for running jobs

e Ind _ssi : “Extra” information that eaclboot module can define. Each module must provide its

own definition for the typdnd _ssi _boot _nodeinfo (but not necessarily before including the
lamnet.h file).

2.3.2 struct psc

This type is returned in &IST by thehbootparse() function (see Sectio8.5.2. It contains a list of
argv -style arrays of processes to start on a target node.

struct psc{
char xxpscargv;
int4 pscargc;
int4 pscdelay;
int4 pscflags;

The members are:

e psc _argv : NULL-terminated array of command line tokens to start on the target node.
e psc _argc : Length ofpsc _argv .
e psc _delay : Delay this many seconds after starting.

e psc _flags : Currently unused; reserved for future expansion.

2.3.3 lam _ssi _boot _proc _t

This type is used as an argumenbtaot API functions, indicating which LAM RTE process to start.

typedef enum{
LAM _SSIBOOT_PROCLAMD,
LAM _SSIBOOT_PROCRECON,
LAM _SSIBOOT_PROCWIPE,

LAM _SSLBOOT_PROCMAX
} lam_ssibootproct;

2.4 Global Variables

Several global variables are available tdalbt modules. These variables aetern ’ed in<lam-ssi-boot.h>

2.4.1 int lam _ssi _boot _base _server _port

Thisint is defined and set by the TCP startup protocol functions, and is described in Sxbtitih

2.4.2 int lam _ssi _boot _did

Thisint is set by theboot SSI initialization function, and will therefore be usable by evbopt API
function (includingopen). Itis the debug stream ID specific to theot SSI modules (se€] for a descrip-
tion of LAM/MPI debug streams). Iboot modules do not create their own debug streams, they should use
lam _ssi _boot _did .

Debug streams should be used in conjunction Wath _ssi _boot _verbose . Note, however, than
debug streams should be used with care (and/or “compiled out” with preprocessor directives when not in
use) because even if their output is not displayed, they still invoke a function call and may generate overhead
at run-time.

2.4.3 int lam _ssi _boot _verbose

Thelam _ssi _boot _verbose variable will be set by théoot SSI initialization function, and will there-
fore be usable by evetyoot API function.

lam _ssi _boot _verbose is used to indicate how many “status” messages should be displayed. This
does not pertain to error messages that the module may need to print — only messages that are superfluous
“what’s going on” kind of messages.

The value of this variable should be interpreted as following:

e Less than zero: do not output any status messages.

e Zero: print minimal amounts of status messages. This typically corresponds tevthdldg on
various LAM commands.

e Greater than zero: print status messages — potentially more than if the value were zero; exact meaning
is left up to the module. A value of 1000 typically corresponds to tiie"“flag on various LAM
commands.

2.4.4 int lam _ssi _boot _optd

Thelam _ssi _boot _opt variable is of typeDPT*. It will be set to a norNULL value after the call to the
boot SSI's main open call (i.e., before any API function$obt modules). It contains the parsed arguments
from the command line. See tlal _opt(3) man page for details on how to use D Ttype.

Most boot modules will not need this variable. One of the API functions (described in Segtn
receives th@OPT* variable as a parameter. If later API functions require information from it, the module
can save a local copy that can be shared throughout the module. The main purpose of this variable is for
utility routines provided by thdoot SSI that can be used as API functions, but are not part of individual
modules (described in Secti@b).

10

2.5 Functions

Several common functions are provided tokaibt SSI modules.

2.5.1 Dbhostparse()

#include <boot.h>
int bhostparsahar *filename struct lamnodexxnodesjnt xnnodes);

Parses a boot schema and returns an arrayret lamnode instancesfilename s the filename
of the file to parsennodes will be allocated and filled by this function (it is the caller’s responsibility to
free thenodes array later)nnodes is set to the length afinodes .

bhostparse() will parse all key-value pairs and place them in thd _keyval member on the
corresponding entries in theodes array. bhostparse() also sets/clealT_WASTE depending upon
whether the key-value pagschedule=yes/no has been defined. See sectB.1for information on
NT_WASTE.

This function is typically invoked in thallocate _nodes API call (see SectioB.5).

2.5.2 hbootparse()

#include <boot.h>
int hbootparseft debug, OPTad,char xinettopo,char xrtr_topo, LIST xxproc.list);

Find the LAM RTE configuration file in the command line parameters and parse it, doing variable
substitution (ifinet _topo orrtr _topo are nonNULL), and return &IST of argv arrays containing
LAM RTE processes to start on remote nodes. The default LAM RTE configuration file specifies only a
singlelamd (with some associated command line parameters). Other configurations are also possible (such
as starting multiple processes on the target node).

The returned.IST contains a list obtruct psc instances. This list can be processed bylibet
module to actually start the specified process(es) on the target node(s).

If the boot module uses one of the built-in booting algorithms, this function is typically invoked by
thestart _rte _proc internal API function (see Sectidhll) in conjunction with thdam _ssi _boot _-
inet _topo() function when starting theemd RTE process. For example (many details omitted):

int lam_ssiboottm_startrte_proc(struct lamnodexnode, lamssiboot proc.t which) {
if (which == LAM_SSLBOOT_PROCLAMD) {
struct pscx*p;
char xinet_.buf = lam.ssiboot build_inet topo(node, originamnode, originid)

hbootparse(lanssibootdid, lamssibootoptd, inetbuf, NULL, &bootlist);
for (p = alLtop(bootlist); p; p = alhext(bootlist, p)X
/+ Must not modify the contents of the list items; make duplicates to worksvith
av_cmd = sfthargv.dup(p->pscargv);
accmd = p—>pscargc;
remotelaunch(&avcmd, &accmd, node);
}
free(inetbuf);
al_free(bootlist);

11

X I

2.5.3 lam _deallocate _nodes()

#include <boot.h>
int lam_deallocatenodesstruct lamnodexxnodesjnt xnnodes);

Utility function to deallocate an array atruct lamnode s. It isnot sufficient to simplyfree()
thenodes array; this function is provided because each item in the array may contain additional memory
that must be specifically freed (e.g., the key=value pairs). Upon return from this furfctomes will be
set toNULL, and*nnodes will be set to 0.

This function is typically invoked from thdeallocate _nodes() API function.

2.5.4 lam _ssi _boot _base _check _priority()

[int lam_ssiboot basecheckpriority(char *xmodulename,nt basejnt wantdefault,int «priority);]

A utility function that performs some mundane tasks:
e Assignpriority to the base priority.
e Ifthewant _default flag is setto 1, satriority to 75.

e If module _nameis notNULL and if the environment variableAMMPI_SSI _boot _NAMEpriority
is set, sepriority to the integer value of that variable.

The end result is thadriority will have a valid priority assigned to it when the function returns.

2.5.5 lam _ssi _boot _base find _boot _schema()

{char xlam_ssi.boot basefind_bootschema(OPFkargs); }

Analyzesargc andargv to find the boot schema and verify that it exists.

Note thatOPT* is an internal LAM type for holding command line parameters. Its use is documented
intheall _opt(3) man page.

opt is not modified by this function. The return value will be a string representing the filename of the
found boot schema, MULL if nothing was found (indicating an error). If nothing is found, an appropriate
error message will be printed.

If an absolute pathname is found, it is used. If a relative pathname is found, it is checked against the
present directory, th8 TROLLIUSHOME/etc directory, theSLAMHOME/etc directory, and finally the
LAM $sysconf directory (selected at configuration time).

A lam _ssi _boot _verbose value of one or larger will trigger output to them _ssi _boot _did
debug stream.

This function is typically invoked in thparse _options API call (see Sectio3.4).

12

2.5.6 lam _ssi _boot _base find _hostname()

[char xlam_ssiboot basefind_hosthname(OP%args); j

This function is used when tHamgrow command was used to invoke the boot SSI. This is because the
lamgrow command does not provide a boot schema file — a single hostname is provided on the command
line for growing the current LAM universe. This function analyaegc andargv to find a string hostname
or IP address and verify that it exists.

Note thatOPT* is an internal LAM type for holding command line parameters. Its use is documented
intheall _opt(3) man page.

opt is not modified by this function. The return value will be a string representing the found host-
name/address AMULL if nothing was found (indicating an error). If nothing is found, an appropriate error
message will be printed.

A lam _ssi _boot _verbose value of one or larger will trigger output to them _ssi _boot _did
debug stream.

This function is typically invoked in thparse _options API call (see Sectio3.4).

2.5.7 lam _ssi _boot _base _lamgrow()

char xlam_ssiboot baselamgrowhar xhostnamestruct lamnodexxnodes,
int xnnodesijnt xorigin);

This function is used when themgrow command was used to invoke the boot SSI. This is because the
lamgrow command does not provide a boot schema file — a single hostname is provided on the command
line for growing the current LAM universe. This function analyzes the current LAM universe and generates
an array ofstruct lamnode instances based on its contents, to include an instance for the new node to
be booted. Only the entry for the new node will have ifieBOOTflag set.

hostname s the string host name or IP address of the node to be bowtelegs is allocated and filled
by this function (it is the caller’s responsibility to free thedes array later);nnodes is set to the length
of nodes . The origin argument is filled with the origin node’s ID. Note that it is not necessarily the same
node as the node that is invokitagngrow .

Depending on holamgrow was invoked, itis possible that the arraystfuct lamnode instances
may contain entries for “invalid” nodes (see tlaengrow(1) man page for more details). Such entries
will have a node ID oNOTNODEIDand all their other data will be invalid. Although these nodes must be
skipped by the booting algorithms (all the provided algorithms properly skip them), space must be allocated
for them in all internal arrays and tables.

This function is typically invoked in thallocate _nodes API call (see SectioB.5).

2.5.8 lam _ssi _boot _base _ioexecvp()

[int lam_ssiboot baseioexecvphar xxcmdv,int showoutchar xoutbuff,int outbuffsize); }

This function is used to execute a command. It is typically used to execute a command that starts LAM
daemons or starts a proxy process which then starts LAM daemons.

cmdv contains the command to be executed. The function can direct command stdout to buffer and/or
stdout.showout is used to control this. If command stdout is to be directed to output bufferptitenff
should point to the buffer for stdout data amatbuffsize should contain size of this buffer.

This function is typically indirectly invoked in thetart _application API call (see Sectio3.10).

13

2.5.9 lam _ssi _boot _build _inet _topo()

char xlam_ssiboot build_inet topo(struct lamnodexdestnode,struct lamnode originnode,
int origin);

This function is typically invoked before callingbootparse() . It examines the command line
arguments (idam _ssi _boot _optd) and builds a string suitable for replacement asfiimet _topo in
LAM RTE configuration files. This string is typically later passed tolhbeotparse() function for this
exact purpose.

The string that is returned from this functiomlloc 'ed memory; it must later be freed by the caller.

2.5.10 lam _ssi _boot _.do_commonargs()

{int lam_ssiboot do_.commonargs(OPT«aod,int xargc,char sxxargv); }

Utility function to handle some mundane argument handling (e.g., adding “-v” and/or “-afgto if
they are found imod). It is typically invoked with theargv of a process to start on a remote node, allowing
“v" and “-d” to propogate to remote processes.

2.5.11 Built-in Algorithms

Theboot SSI framework provides several generalized algorithms to launch processes across a set of nodes.
These algorithms are generally invoked from within boot module API calls. The algorithms, in turn, will
make callbacks into the module to perform the actual work (e.g., launch a process). The algorithms perform
all the necessary bookkeeping and timing to execute the entire set of tasks as well as exchange all startup
protocol information (if necessary). Note, however, that these functions will all skip nodes that are not either
not marked with théNT_BOOTilag or have a node ID that is equalN®TNODEID

Note that the use of these functions is not mandatory. They are simply provided as drop-in algorithms
so that modules do not need to write their own.

Sectionl.2generally describes the available algorithms. Their names are long because of the SSI prefix
rule. Each of the functions below have the same signature:

int algorithmetruct lamnodexnodesjnt nnodesjnt wantstartupprotocol,
lam_ssiboot proc.t which, int xnum.started);

The arguments are as follows:
¢ IN: nodes is an array of nodes to boot across.
e IN: nnodes is the length of theodes array.

e IN:want _startup _protocol is aflagindicating whether the function should invoke the module’s
startup protocol functions at the apporpriate times during the boot process. It should only be setto 1
when booting LAM daemons; 0 all other times.

e IN: which is an enum indicating what kind of process to launch (see Se2t .

e OUT: numstarted will be filled in by the algorithm indicating how many nodes were actually
booted.

The provided algorithm functions are:

14

lam _ssi _boot _base _alg _linear() : Simple linear process-launching algorithm.

lam _ssi _boot _base _alg _linear _windowed() : Linear algorithm with a sliding window for

the startup protocols. This is especially well-suited for boot environments where remote process
invocation latency can be hidden by not waiting for a remote action to finish before progressing onto
the next action. This algorithm guarantees that there will never be moreNhautstanding agents
waiting to exchange startup protocol information.

This algorithm is especially relevant if the built-in TCP startup protocols are used (described in Sec-
tion 2.5.19, because at least some operating system TCP stacks only allow a limited number of clients
to be pending on a listening socket. Hence, using the windowed algorithm will guarantee that that
operating system limit is never exceeded.

The default window value is 5, and can be changed by settinjdbe _base _linear _win _size
SSI run-time parameter.

lam _ssi _boot _base _alg _tree() : N-way tree-based process-launching algorithivni¢ deter-

mined at run-time). This algorithm will first launch a tree of “helper” executables — one on each
interior node (and potentially exterior nodes) in the tree. After the helper tree is established, the target
LAM RTE process will be launched, and any necessary startup information will be exchanged.

Note: This function is not yet implemented.

lam _ssi _boot _base _alg _thread() : Same as the tree-based algorithm, except that each inte-
rior node will use multiple threads to perform its actions and may invokebtiwe API functions
multiple times simultaneously within a single processot modules that use the thread algorithm
must not only be thread safe, but also provide a high degree of concurrency when its API calls are
simultaneously invoked with orthogonal sets of parameters.

Note: This function is not yet implemented.

2.5.12 TCP-Based Startup Protocols

Most (if not all) boot modules will be able to use the generalized TCP startup protocol functions since TCP
is likely able to be used for such meta-information exchanges regardless of the underlying communication
network. If TCP connectivity is not available, theot module will need to provide startup protocols itself.

These functions eliminate the need for mibsbt modules to provide their own functions for several of
theboot API calls. Since these functions can be used for the corresponding API functions, only their names
are listed below — their signatures and behavior are described in S8ction

lam _ssi _boot _base _open _srv _connection()
lam _ssi _boot _base _send _lamd _info()

lam _ssi _boot _base _receive _lamd _info()
lam _ssi _boot _base _close _srv _connection()
lam _ssi _boot _base _send _universe _info()

lam _ssi _boot _base _receive _universe _info()

15

Note that these functions are subject to operating system limits such as how many pending clients can
be held on a listening socket. Some operating systems have a surprisingly low backlog limit. Modules that
utilize booting algorithms that could have multiple clients simultaneously calling the server back should be
aware of this limitation, and either use multiple servers or some kind of windowed protocol (e.g., the linear
windowed algorithm described in Secti@rb.1)).

The information that must be exchanged is:

e From thelamd to lamboot , send the following:

— UDP port number that themd will use for normal operations
— Any other information required to call tHamd back to pass the universe information

e Fromlamboot to thelamd, loop sending the following information to eatdimd in the LAM
universe:

Integer node identifier of thdéamd (from0to N — 1), or NOTNODEIDX it is not a valid node
Either the byte-packed IP address of taed or the string hostname of themd

Integer UDP port number that th@md is listening on
Integer (bit flags) for the node that thkeend is running on (see Sectich3.J)
Integer number of CPUs that theemd thinks that the node has

3 boot SSI Module API

This is version 1.0.0 of theoot SSI module API.

Eachboot SSI module must export astruct lam _ssi _boot -1_.0_0 namedlam _ssi _boot _-
<name>_module . This type is defined in Figur&. This struct contains a small number of items,
one of which is a function pointer that may return a pointer tostinect shown in Figure2.

typedef struct lam_ssiboot1 0.0 {
lam.ssi1.0_0_t Isb_metainfo;

[+ Initialize / finalize functions/
lam_ssibootinit_fn_t Isb.init;

lam_ssiboot finalize fn_t Isb_finalize;
} lam_ssiboot 1 0.0t;

Figure 1: Theboot type for exporting the initialization and finalization API function pointers.

The majority of the elements in Figurésand?2 are function pointer types; each is discussed in detail
below. When describing the function prototypes, the parameters are marked in one of three ways:

e IN: The parameter is read — but not modified — by the function.
e OUT: The parameter, or the element pointed to by the parameter may be modified by the function.

e IN/OUT: The parameter, or the element pointed to by the parameter is read by, and may be modified
by the function.

16

typedef struct lam_ssibootactions1 0.0 {
/x Boot API function pointers/

lam_ssiboot parseoptionsfn_t Isbaparseoptions;
lam_ssiboot allocatenodesfn_t Isbaallocatenodes;
lam_ssiboot verify_nodesfn_t Isbaverify_nodes;
lam_ssiboot prepareboot fn_t Isbaprepareboot;
lam_ssiboot startrte_procsfn_t Isbastartrte_procs;
lam_ssiboot deallocatenodesfn_t Isbadeallocatenodes;

/% Algorithm callback functions (optiona¥y

lam_ssiboot startapplicationfn_t Isbastartapplication;
lam_ssiboot startrte_procfn_t Isbastartrte_proc;

/* Startup protocol: sending individual lamd infd

lam_ssiboot opensrv_connectionfn_t Isbaopensrv_.connection;
lam_ssiboot sendlamd.info_fn_t Isba.sendlamd.info;
lam_ssibootreceivelamd.info_fn_t Isbareceivelamd.info;
lam_ssiboot closesrv_connectionfn_t Isbaclosesrv_.connection;

/* Startup protocol: broadcasting universe infb

lam_ssiboot senduniverseinfo_fn_t Isbasenduniverseinfo;
lam_ssibootreceiveuniverseinfo_t Isbareceiveuniverseinfo;

} lam_ssibootactions1_0.0._t;

Figure 2: Theboot type for exporting the main action API function pointers.

Function prototypes are also marked as one of three classes:

e Boot API: This function is part of the set of functions that start processes on nodes. This function will
be invoked by the LAM infrastructure.

e Algorithm Callback: This function is invoked as a callback from the LAM-provided boot algorithm
function frameworks. Although these functions serve as useful abstractions, they are only required if
the LAM-provided boot algorithms are used.

e Protocol: This function is part of the set of functions that exchange startup protocol information.

boot module writers looking for insight into how the API is used should also look at the source code for
lamboot , recon , andwipe .

17

3.1 Dataltem: Isb _meta _info

Isb _meta_info is the SSI-mandated element contains meta-information about the moduleZ] $a&e |
more information about this element.

3.2 API Function Call: Isb _init

e Type:lam _ssi _boot _init _fn _t

typedef constlam_ssiboot actionst x(xlam_ssiboot.init_fn_t)
(lam_ssibootlocationt where,int xpriority);

e Arguments:

— IN: where is anenum indicating where this module is being initialized. The value will be one
of the following:

x LAMSSI _BOOTLOCATIONROOT The module is being invoked on the root of the boot.
This typically means a user-level command suclaagoot ,recon ,wipe , orlamgrow .

x LAMSSI _BOOTLOCATIONINTERIOR: This module is being invoked in an interior node
of the boot. This may mean that a hierarchical boot algorithm is being used, and that this
process is a “helper” launching application. It directly implies that this node has both a
parent and one or more children.

x LAMSSI _BOOTLOCATIONLEAF: All other cases. This includes the LAM daemon itself
(see below).

— OUT: priority is the priority of this module, and is used to choose which module will be
selected from the set of available modules at run time.
e Return value: EitheNULL or a pointer to thetruct shown in Figure2.

e Description: If the module wants to be considered for selection, it must return a pointestoutte
shown in Figure2 that is filled with relevant data and assign an associated prioripyitity
See P] for more details on the priority system and how modules are selected at run time.

If the module does not want to be considered during the negotiation for this communicator, it should
returnNULL (the value inpriority is then ignored).

Note that the LAM daemon itself must also initialize theot SSI and come to the same selection
conclusion as its peers. Although the LAM daemon will not use ariyoot API functions to launch
remote processes, it will use the startup protocol functions to exchange location information with a
peer.

3.3 API Function Call: Isb _finalize

e Type:lam _ssi _boot finalize _fn _t

[typedef int (xlam_ssiboot finalize fn_t)(void); }

e Arguments: None.

e Return value: Zero on success, nonzero otherwise.

18

e Description: Finalize the use of this module. It is the last function to be called in the scope of this
module’s selection before the module close function. It should release any resources allocated during
the life of this scope.

3.4 API Function Call: Isba _parse _options

e Type:lam _ssi _boot _parse _options _fn _t

[typedef int (xlam_ssiboot parseoptionsfn_t)(OPT xargs,int bhostschemaargs); }

e Arguments:

— IN: args contains the command line arguments.

— IN: bhost _schema_args is 1 if theargc /argv pair contains a boot schema filename (e.g.,
from lamboot , recon , andwipe), and O if the pair contains a string hostname/IP address
(e.g., fromlamgrow).

e Return value: Zero on success, nonzero otherwise.

e Description: The module can examine the command line parameters (sdke ttopt(3) man page
for details on how to use th@PTtype).

This API function typically makes use of the two utility functiolasn _ssi _boot _base _find _-
boot _schema() andlam _ssi _boot _base _find _hosthame() (described in Section2.5.5
and2.5.6 respectively).

3.5 API Function Call: Isba _allocate _nodes

e Type:lam _ssi _boot _allocate _nodes _fn _t

[typedef int (xlam_ssiboot allocatenodesfn_t)(struct lamnodexxnodesjnt xnnodesjnt xorigin); j

e Arguments:

— OUT: nodes is a pointer to astruct lamnode that this function is expected to fill with an
array ofstruct lamnode s.

— OUT: nnodes is a pointer to anint that this function is expected to fill with the length of
nodes array.

— OUT: origin is a pointer to aint that this function is expected to fill with an index into the
nodes array representing the element for this node.

e Return value: Zero on success, nonzero otherwise.

e Description: Create and fill in &amnode structure for each node to be booted. There are few
requirements on the completeness of the structure, but all unused fields should be zeroed out before
returning. Additionally, thénd _type field for the origin member should have thN& ORIGIN and
NT_MEflags set. Additionally, the total number of nodes must be correct.

Note that this function’s actions may be determined by the value dbliket _schema _args flag
to theparse _options() API call.

19

Thedeallocate _nodes() API call should later be used to free the memory associated with the
nodes list.

This API function typically makes use of the two utility functiobisostparse() andlam _ssi _-
boot _base _lamgrow() (described in Sectiord.5.1and2.5.7, respectively).

3.6 API Function Call: Isba _verify _nodes

e Type:lam _ssi _boot _verify _nodes _fn _t

[typedef int (xlam_ssiboot verify_nodesfn_t)(struct lamnodexnodesjnt nnodes); }

e Arguments:

— IN: nodes is the array ofstruct lamnode s returned by thallocate _nodes() API
call.

— IN: nnodes length of thenodes array.
e Return value: Zero on success, nonzero otherwise.

e Description: Last sanity check on the node list. If possible, check the node list for conditions such as
(but not limited to):

Existence of node (e.g., try to resolve IP hames)
Permission to execute on node
Ensure that the local node is in the list

If the number of nodes is greater than one, ensure that the local address is not 127.0.0.1 if using
standard IP-passing scheme

After this call,lamnodes should be filled in with enough information for thot SSI to contact

each of the target notes. As such, it needs to determine which entry in the array is the origin (this may
have been determined by th#bocate _nodes() API call, but in some cases, it is not possible to
determine it until here iverify _nodes()).

3.7 API Function Call: Isba _prepare _boot

e Type:lam _ssi _boot _prepare _boot _fn _t

[typedef int (xlam_ssiboot prepareboot fn_t)(void);]

e Arguments: None.
e Return value: Zero on success, nonzero otherwise.

e Description: Perform any setup work that might be needed bgte _rte _procs() API call,
but that only needs to be done once. For example, on BProc architetino¢spodules may generate
theargv arrays for starting up the LAM daemons.

20

3.8 API Function Call: Isba _start _rte _procs

e Type:lam _ssi _boot _start _rte _procs _fn _t

typedef int (xlam_ssiboot startrte_procsfn_t)
(struct lamnodexnodesjnt nnodes, lamssiboot proc.t which, int xnum started);

e Arguments:

IN: nodes is the array of nodes to start processes on

IN: nnodes is the length of theodes array.

IN: which is anenum specifying which LAM RTE process to start.

OUT: numstarted is a pointer to aint indicating how many processes were successfully
started.

e Return value: Zero on success, nonzero otherwise.

e Description: Takes aodes array and starts a LAM RTE process on each node.

The function must only launch on nodes that haveNReBOOTilag set on their type and do not have
a node ID oNOTNODEIDAII other nodes must be skipped.

Note that there is both a return code from this function (indicating overall success or failure) and
a separate count of how many processes were started. This is for the casesarhepocesses

may start properly, but others fail. Timem started argument tells the caller how many processes
now need to be cleaned up. Thedes array can be examined to find out exactly which nodes
were successfully boote®T_BOOTmust be reset on tHad _type of nodes that were successfully
started).

If any of the LAM-provided boot algorithms are used, this is the function that typically invokes them.

3.9 API Function Call: Isba _deallocate _nodes

e Type:lam _ssi _boot _deallocate _nodes _fn _t

[typedef int (xlam_ssiboot deallocatenodesfn_t)(struct lamnodexxnodesjnt xnnodes); J

e Arguments:

— IN/OUT: nodes is an array of nodes.
— IN/OUT: nnodes is the length of thenodes array.

e Return value: Zero on success, nonzero otherwise.

e Description: Clean up any memory associated with the node allocation step. Although not required,
modules are encouraged to resetles andnnodes to NULL and 0, respectively, when the function
returns. This function will be called only after the nodes information is no longer needed. This
function typically invokedam _deallocate _nodes() (see Sectio2.5.3.

21

3.10 Algorithm Callback Function Call: Isba _start _application

e Type:lam _ssi _boot _start _application _fn _t

typedef int (xlam_ssiboot startapplicationfn_t)
(char xsxargv,int argc,int num.procs,struct lamnodexnode);

e Arguments:

IN: argv is an array ofargv -style command line arguments; i.e., an array of commands to
start.

IN: argc is an array of indicating how long each array is in #rgv array.

IN: numprocs is the length of the first dimension afgv .

IN: node is a pointer to a singlstruct lamnode indicating which node to start on.
e Return value: Number of processes successfully started.

e Description: Launch the specified processes on the specified node. Return the number of processes
successfully booted. Hence, if the return value is equalum procs , the function completed
successfully. There is no mandate that processes be started in the order theyaggist.in

The return value is explicitly vague so that modules can get “even more parallelism” if they happen
to use a remote startup agent that provides a high degree of parallelism.

It is incorrect to use this function directly from a boot algorithm to launch a LAM RTE process (e.g.,
lamd , recon , wipe). Use thestart _rte _proc() API function instead. This function should
only be used by a boot algorithm to start up other instances of the boot algorithm (i.e., “helper”
executables).

3.11 Algorithm Callback Function Call: Isba _start _rte _proc

e Type:lam _ssi _boot _start _rte _proc _fn _t

typedef int (xlam_ssiboot startrte_procfn_t)
(struct lamnodexnode, lamssiboot proct which);

e Arguments:

— IN: node is a pointer to a singlstruct lamnode indicating where the process should be
started.

— IN: which is anenumindicating what kind of LAM RTE process should be started (see Sec-
tion 2.3.3.

e Return value: Zero on success, nonzero otherwise.

e Description: Starta LAM RTE process on the specified node. This can ustathe _application()
API function (in fact, it is encouraged).

This function exists because the boot algorithm should not need to know any of the details about
starting a LAM RTE process. This function provides an upcall to give the boot algorithm an abstract
mechanism to launch a LAM RTE process.

22

3.12 Protocol Function Call:Isba _open _srv _connection

e Type:lam _ssi _boot _open _srv _connection _fn _t

[typedef int (xlam_ssiboot opensrv_connectionfn_t)(struct lamnodexnodesjnt nnodes); J

e Arguments:

— IN: nodes is a pointer to an array aftruct lamnode s that are expected to connect to this
process.

— IN: nnodes is the length of thaodes array.

e Return value: Zero on success, nonzero otherwise.

e Description: Open a private, server-side communication endpoint (i.e., the channel will only be used
within the boot SSI) that the LAM daemon will connect back to. This function will only be called
once per instance of the module, meaning that if youRGOTLINEAR, it will only be called once
(on the origin node) but oBOOTTREEIit may be called multiple times (one for each helper process).

Note that the addresses givenrindes may or may not be the actual clients that connect. There

are some valid network architectures where connections may seem to come from addresses other
than what are listed in theodes array. It is suggested twoot module authors that unless the special
“boot promiscuous mode” is enabled in LAM, only accept connections from the addresses listed in the
nodes array (when possible). However, when “promiscuous mode” is enabled, accept connections
from anyone, and rely on the connector to identify themselves in the boot protocol.

3.13 Protocol Function Call: Isha _send _lamd _info

e Type:lam _ssi _boot _send _lamd _info _fn _t

[typedef int (xlam_ssiboot sendlamd.info_fn_t)(OPT xargs,int dli_port); J

e Arguments:

— IN: args contains the command line parameters.

— IN: dli _port isthe UDP port number that the local LAM daemon is listening on for normal
operations.

e Return value: Zero on success, nonzero otherwise.

e Description: Open a connection back to the booting agent, send relevant location information (e.g.,
the LAM’s UDP port number), and then closes the connection. It is assumed that the information
necessary to connect back to the invoking agent is either in the command line arguments (see the
all _opt(3) man page for details on how to access@Ttype) or in the environment.

3.14 Protocol Function Call: Isba _receive _lamd _info

e Type:lam _ssi _boot _receive _lamd _info _fn _t

[typedef int (xlam_ssiboot receivelamd.info_fn_t)(struct lamnodexnodesjnt nnodes); j

23

e Arguments:

— IN/OUT: nodes is a pointer to an array aftruct lamnode s that were successfully started.
— IN: nnodes is the length of theodes array.

e Return value: Zero on success, nonzero otherwise.

e Description: Accept a connection from a LAM daemon and receive the information it sends back. The
function is provided with an array struct lamnode entries, one of which will correspond to the
LAM daemon that will be contacting it. It is up to the function to figure out which one is responding.
When finished, close the connection. A new connection is used to broadcast the information at a later
time.

In the case that only one LAM daemon can be communicating with the function, (for example, when
the boot algorithm is linear), themodes will one and the job of searching is much easier.

3.15 Protocol Function Call: Isha _close _srv _connection

e Type:lam _ssi _boot _close _srv _connection _fn _t

[typedef int (xlam_ssiboot closesrv_connectionfn_t)(void); }

e Arguments: None.
e Return value: Zero on success, nonzero otherwise.

e Description: Close the channel opened duringdpen _srv _connection() API function.

3.16 Protocol Function Call:Isbha _send _universe _info

e Type:lam _ssi _boot _send _universe _info _fn _t

[typedef int (xlam_ssiboot senduniverseinfo_fn_t)(struct lamnodexnodes;nt nnodesjnt which); }

e Arguments:

— IN: nodes is an array of nodes that the information needs to be broadcast to.
— IN: nnodes is the length of theodes array.
— IN: which is an index into thenodes array indicating which node to connect and send the
information to.
e Return value: Zero on success, nonzero otherwise.
e Description: Connect to LAM daemon and send the union of all the LAM location information (i.e.,
send information about all the peer LAM daemons that comprise the LAM universe).
This function opens a connection to a target LAM daemon, sends the information, and disconnects.

24

3.17 Protocol Function Call:Isba _receive _universe _info

e Type:lam _ssi _boot _receive _universe _info _t

[typedef int (xlam_ssibootreceiveuniverseinfo_t)(struct lamnodexxuniversejnt *universesize);]

e Arguments:

— OUT: universe is a pointer to an (as yet unallocated) array of information that will be re-
ceived.

— OUT: universe _size is a pointer to annt that will be filled to be the length of the
universe array.

e Return value: Zero on success, nonzero otherwise.

e Description: After the LAM daemon communicates its port information to the booting process, it
waits for information about the entire run-time universe. This function is where it waits for that
information. It returns the information returned about all neighbors.

Similar to thereceive _amd _info() API function, this function should accept the connection,
read the information, and close the connection when finished reading.
4 To Be Determined
Things that still need to be addressed:
e Tree algorithm needs to be implemented.
e Thread algorithm needs to be implemented.
e It is likely that future versions of this APl will need to adjust some of the API calls to allow for the
tree and thread algorithms — allowing arrays of lamd and universe info to be passed, etc.
5 Acknowledgements
This work was supported by a grant from the Lily Endowment National Science Foundation grant 0116050,
and used research and development resources of the University of Pennsylvania Liniac Project.
References

[1] Brian Barrett, Jeff Squyres, and Andrew LumsdaineLAM/MPI Design Document Open
Systems Laboratory, Pervasive Technology Labs, Indiana University, Bloomington, IN. See
http://mwww.lam-mpi.org/

[2] Jeffrey M. Squyres, Brian Barrett, and Andrew Lumsdaine. The system services interface (SSI) to
LAM/MPI. Technical Report TR575, Indiana University, Computer Science Department, 2003.

25

	Overview
	General Scheme
	Starting LAM RTE Executables
	Exchanging Startup Protocols

	Booting Algorithms
	Error Handling

	Services Provided by the boot SSI
	Header Files
	Module Selection Mechanism
	Types
	struct lamnode
	struct psc
	lam_ssi_boot_proc_t

	Global Variables
	int lam_ssi_boot_base_server_port
	int lam_ssi_boot_did
	int lam_ssi_boot_verbose
	int lam_ssi_boot_optd

	Functions
	bhostparse()
	hbootparse()
	lam_deallocate_nodes()
	lam_ssi_boot_base_check_priority()
	lam_ssi_boot_base_find_boot_schema()
	lam_ssi_boot_base_find_hostname()
	lam_ssi_boot_base_lamgrow()
	lam_ssi_boot_base_ioexecvp()
	lam_ssi_boot_build_inet_topo()
	lam_ssi_boot_do_common_args()
	Built-in Algorithms
	TCP-Based Startup Protocols

	boot SSI Module API
	Data Item: lsb_meta_info
	API Function Call: lsb_init
	API Function Call: lsb_finalize
	API Function Call: lsba_parse_options
	API Function Call: lsba_allocate_nodes
	API Function Call: lsba_verify_nodes
	API Function Call: lsba_prepare_boot
	API Function Call: lsba_start_rte_procs
	API Function Call: lsba_deallocate_nodes
	Algorithm Callback Function Call: lsba_start_application
	Algorithm Callback Function Call: lsba_start_rte_proc
	Protocol Function Call: lsba_open_srv_connection
	Protocol Function Call: lsba_send_lamd_info
	Protocol Function Call: lsba_receive_lamd_info
	Protocol Function Call: lsba_close_srv_connection
	Protocol Function Call: lsba_send_universe_info
	Protocol Function Call: lsba_receive_universe_info

	To Be Determined
	Acknowledgements
	References

