
The System Services Interface (SSI)
to LAM/MPI

SSI Version 1.0.0

Jeffrey M. Squyres
Brian Barrett

Andrew Lumsdaine
http://www.lam-mpi.org/

Open Systems Laboratory
Pervasive Technologies Labs

Indiana University
CS TR575

August 4, 2003

http://www.lam-mpi.org/

Contents

1 Overview 3
1.1 Terminology. 3
1.2 LAM’s Role in SSI . 4

1.2.1 Statically vs. Dynamically Linked Modules. 4
1.3 LAM SSI and MPI SSI. 5
1.4 Module Basic Requirements. 5
1.5 Notable Side Effect: Long Public Symbol Names. 6
1.6 Organization. 6

2 Directory Layout 7

3 Configuring the Module 7
3.1 Generatingconfigure Scripts . 7

3.1.1 Usingautogen.sh on a Single Directory. 8
3.1.2 Changingautogen.sh ’s Default Behavior . 8
3.1.3 Utilizing Common LAM GNU Auto Tool Elements. 8

3.2 Runningconfigure Scripts .15
3.2.1 Module-Specific Parameters. .15
3.2.2 Returning Values Fromconfigure . 16
3.2.3 When theconfigure ScriptMustSucceed . 17

4 Building the Module 17

5 Installing the Module 17

6 Selecting the Module at Run Time 19
6.1 Terminology. .19
6.2 General Scheme. .20

6.2.1 MPI Selection Algorithm. .20
6.3 Specific Selection Mechanisms. .21

7 Module Source Code 21
7.1 Base SSI API. .22

7.1.1 Module Open Function. .22
7.1.2 Module Close Function. .23
7.1.3 The Base SSI Datatype:lam ssi t . 23
7.1.4 Example Usage: therpi SSI Kind . 24

7.2 Help Messages. .26
7.3 Verbosity .26

8 Passing Run-Time Parameters to the Module 27

9 Unresolved Issues 27

10 Acknowledgements 28

References 28

2

1 Overview

The LAM System Services Interface (SSI) is a two-tiered modular framework for collections of system
interfaces. The goal of SSI is to enable multiple instances of interfaces (each from their own respective
collection) to be available at run time. Run-time decisions can be made about which interface instance
to use, and to enable passing of tunable parameters to target instances. Figure1 shows this relationship
graphically.

Tier 2:
Instance B

Tier 2:
Instance A

Tier 2:
Instance C

Tier 1: System interface definition collection

mpirun

Parameters

...

Figure 1: LAM may export one or more instances of any given system interface. At run time, the decision
is made as to which instance will be selected. Optionally, parameters may also be passed to the interface
instances at run time. In this example,mpirun has selected to use instance C, and has passed some param-
eters to it.

The overall intent for SSI is to allow a modular “plug-n-play” approach to the system services that LAM
and MPI must use. Specifically, each tier 2 instance in Figure1 is a self-contained set of source code.
It has its own directory structure and can configure, build, and install itself. The LAM frameworks will
automatically detect each instance and invoke the corresponding hooks during the outer-level configuration,
building, and installation phases.

This type of architecture will make it easy to add “drop-in” modules to the LAM framework and have
them be seamlessly integrated into the run-time environment of LAM/MPI. From a source code perspective,
this architecture creates a logical abstraction barrier between each instance and the rest of LAM. Not only
does such a modular approach make is easier to add new interface instances, it can also facilitate develop-
ment of interface instances by third parties.

1.1 Terminology

Each collection of interfaces (i.e., “tier 1” in Figure1) is a component type (frequently abbreviated as
“type,” or referred to as a “kind”). LAM strictly defines each component type: the API that it exports, the
mechanism used to determine run-time instance selection, etc. Table1 lists the currently available kinds of
APIs. Each is documented in a separate programmer’s guide [3, 4, 5, 6]. Future SSI component types are
also planned; they will be documented as they are created.

3

Name Location Documentation Description

boot LAM See [4] The boot SSI is used to start processes on remote nodes
without the use of LAM daemons. It is used bylamboot ,
recon , wipe , and lamgrow . The boot SSI allows
LAM to use other run-time environments to start itself
(such as the ubiquitousrsh /ssh startup methods).

coll MPI See [5] The coll SSI is used to provide back-end algorithms for
the MPI collective operations. This kind allows third-
party authors to provide new algorithms for MPI collec-
tives based on specific hardware, or new theoretical mod-
els without needing to understand the intricacies of the in-
ternals in LAM.

cr LAM and MPI See [3] Checkpoint-restart support. This kind is used to tie
LAM/MPI to back-end checkpointing support to enable
pausing and restarting parallel MPI jobs.

rpi MPI See [6] The MPI Request Progression Interface (RPI). The RPI is
used for all point-to-point MPI message traffic in LAM.
It is the lowest layer in the point-to-point MPI communi-
cation stack and is responsible for actually moving bytes
between MPI processes.

Table 1: Table of available SSI kinds.

Each interface / component instance (i.e., each of the “tier 2” boxes in Figure1) is called a “module”.
Each module must conform to the component type’s specifications, to include its exported API, run-time
selection mechanisms, etc. Modules – although part of the larger SSI kind and LAM frameworks – are in-
tended to be standalone, self-contained entities in terms of configuration, building, and installing themselves.
More discussion on this subject is included later in this document.

1.2 LAM’s Role in SSI

If SSI can be considered a collection of component instances, then LAM is the component architecture that
provides the meta-framework that ties all the collections of instances together. Specifically, LAM provides
the “glue” meta-framework for configuring, compiling, installing, and loading component modules.

The discussion in this document assumes a LAM development tree – not a LAM distribution package
(e.g., typically not a.tar.gz or .rpm file). Development trees can be obtained via anonymous CVS
checkout or from a nightly CVS snapshot. Seehttp://www.lam-mpi.org/cvs/ for details on both
how to obtain a development tree as well as how to compile it.

1.2.1 Statically vs. Dynamically Linked Modules

The current LAM component framework only supports static linking. As such, all modules that are config-
ured and compiled will become part of larger libraries, such asliblam andlibmpi . Although multiple
modules can be available at run time, the set of all possible modules is determined at compile time – it is not
possible to add or remove modules at run-time.

This is mainly due to limitations in the GNU Libtool package. When the LAM/MPI 7.0 code base was
“closed” in preparation for release, Libtool did not support dynamic modules on enough platforms (e.g.,

4

Mac OS X and AIX 5.1 were conspicuously absent) to justify dynamic modules. After LAM/MPI’s formal
release cycle was started, a new version of Libtool was released that included support for new platforms
(including Mac OS X and AIX 5.1). Hence, although it was too late for 7.0, future versions of LAM/MPI
will have an expanded SSI component framework that can utilize dynamically loaded modules as well. It is
hoped that existing SSI modules will require little or no changes to be able to utilize these new features.

1.3 LAM SSI and MPI SSI

The LAM software package has two major components: the LAM run-time environment and the MPI
communications layer. Generally speaking, LAM provides the services and run-time backbone for the MPI
communication layer. The MPI functionality therefore has a dependency on the LAM functionality; MPI
must always be used with LAM, but LAM can be used independently of MPI. These layers are located in
two different libraries; Figure2 shows a simple view of the layers in a typical user MPI program.

Operating system

User code

MPI Layer (libmpi.a)

LAM (liblam.a)

Figure 2: A simple view of the LAM and MPI layers.

This makes a natural division of SSI kinds – those designed to support LAM services and those designed
to support MPI services. For example, therpi SSI kind mentioned in Section1.1 is used to support MPI
services, and therefore will physically exist in the MPI library (libmpi.a or libmpi.so).

The same dependency exists between SSI kinds; MPI SSI kinds can use any services exported by both
the MPI and LAM layers, but LAM SSI kinds can only use services exported by the LAM layer.

1.4 Module Basic Requirements

Each module is responsible for providing its own configuration, building, and installing mechanisms. LAM
provides some helper tools and hooks into the main LAM configuration, building, and installing mecha-
nisms.

In general, each module must supply the following:

• A top-level directory undershare/ssi/<kind> , where<kind> is the name of the kind of SSI.1

• A directory name that confirms to C variable restrictions; this name is referred to as<module> ,
below.

• A configure script in the top-level module directory. This script will be run by the top-level
LAM configure script. If the module’sconfigure script succeeds, the following additional
requirements must be met:

– Several top-levelmake targets must be supplied. Each target is listed and briefly described
below. For more specific information on these targets, see [2]:

1Note that the module names “include ” and “base ” are reserved and cannot be used.

5

∗ all : build the module. At the end of this target, a GNU Libtool library namedlib<module>.la
must exist in the top-level module library.

∗ install : install the module. This may be a no-op. For example, if the output GNU
Libtool file lib<module>.la represents a static library (and it will, since dynamic mod-
ules are not yet supported; see Section1.2.1), it will be folded into the LAM or MPI library
directly, and does not need to be installed separately.

∗ uninstall : uninstall the module. As with theinstall target, this may be a no-op for
static libraries.

∗ clean : remove all files generated by theall target.
∗ distclean : do everything that theclean target does, and additionally remove all other

generated files such that the directory tree is the same state that it was in when it was
expanded from its distribution package.

∗ tags : use theetags program to generate lists of tags.

– An output GNU Libtool library (lib<module>.la) in the top-level module directory.

– Export a public variable namedlam ssi <kind> <module> module of type lam ssi -
<kind> t pre-filled with relevant information.

1.5 Notable Side Effect: Long Public Symbol Names

It is necessary to prevent symbol name clashes not only between SSI modules themselves, the rest of LAM,
and user programs. This is strictly necessary because of the current static linking model, but at least some
platforms have a single, global symbol namespace even when used with dynamically-loaded modules. As
such, all SSI modules must use prefixes for all public symbols. While guaranteeing to prevent name clashes
with anything else, this has the side effect of making variable and function names rather lengthy.

Symbol prefixes are typically of the form “lam ssi <kind> <module> ” or “ lam-ssi-<kind>--
<module> ” (depending on the context), but the case may be all upper case or all lower case (again, de-
pending on context). This is referred to as “the prefix rule” throughout the rest of this document.

1.6 Organization

This document is intended as a programming guide to supply the necessary instructions and guidelines to
write an SSI module. The specific SSI component type APIs are supplied elsewhere ([3, 4, 5, 6]); this
document describes the meta-framework that is common to all SSI component types.

Making a module usable in the LAM run-time environment and/or MPI communication layer involves
the following steps:

1. Creating the module in the LAM/MPI development tree

2. Supplying source code for the module

3. Configuring the module

4. Building the module

5. Installing the module and/or any necessary support files

6. Being selected to execute at run time

7. Receiving run-time parameters (optional)

Each of these steps are covered in the sections that follow.

6

2 Directory Layout

SSI modules are intended to be implemented as “drop-in” directories in the LAM directory tree. Each
module should be self-contained tree.2 The overall goal is that an SSI module can be inserted in the LAM
directory structure, and the LAM SSI framework will automatically detect it, allowing the module to be
configured, built, and used. No code changes are required outside the module’s own directory structure to
enable this to happen.

A module’s implementation may have whatever directory structure it wishes – it only needs to have its
top-level directory appear in a specific place in the LAM directory tree:share/ssi/<kind>/<module> .
The <kind> name is strictly defined by LAM; the<module> name must be the same as the module’s
name. For example, the LAM provided TCP RPI module is rooted atshare/ssi/rpi/tcp . Module
directory names may be any string adhering to the following requirements:

• The directory name must adhere to filesystem requirements. Some filesystems are not case-sensitive,
so all-lowercase names are recommended.

• The directory name will be used as the name of the module itself, and will be used as [part of]
a variable name in C code. Hence, the directory name must adhere to C variable name standards
(cannot include whitespace, cannot include punctuation, etc.). The module name will not be the first
part of the variable name (it will be prefixed withlam ssi <kind>), so the name may begin with
a number.

• Some SSI kinds reserve particular directory names. Unless otherwise specifically noted, the names
“ include ” and “base ” are reserved and should not used as module names for any kind.

Note that the special file “.lam ignore ” may be placed in a module’s top-level directory. This will
cause LAM to ignore the entire directory tree – it will not be configured, compiled, installed, etc.

3 Configuring the Module

Since SSI modules should be designed to run on as many POSIX systems as possible, SSI modules are
configured before they are built or installed. There are two steps of configuration:

1. Generatingconfigure scripts and related files (e.g.,Makefile.in files)

2. Runningconfigure scripts

3.1 Generatingconfigure Scripts

The main LAM tree and the LAM Team-supplied SSI modules all use the GNU Autoconf and Automake
tools to generateconfigure scripts. This entails a non-trivial sequence of steps that must be followed to
generate these files. As such, the process is automated.

Invoking theautogen.sh in the LAM top-level directory will run the proper sequence of commands
to generate the top-levelconfigure script and as well as all necessaryMakefile.in files throughout
the base LAM development tree. Note thatautogen.sh is not necessary– it is simply a convenience
script to run all the required GNU Auto tools in the proper order.

2The typical exception to this guidelines is when the module chooses to use some reference code from the “outer” LAM tree,
such as top-levelm4Autoconf configuration macros.

7

Since the process is non-trivial, SSI modules may also wish to utilize this automated functionality.
autogen.sh will also look for anyconfigure.in 3 files undershare/ssi/<kind> (for each valid
<kind> name). Ifautogen.sh finds configure.in , it will run all the proper GNU Autoconf and
Automake commands to generate aconfigure script in that directory. If this functionality is sufficient,
SSI module authors do not need to provide their ownautogen.sh scripts.

3.1.1 Usingautogen.sh on a Single Directory

While developing and debugging moduleconfigure.in scripts, it may be necessary to regenerate the
configure script many times. Invoking the top-levelautogen.sh script may actually take several
minutes to run because it has to examine the entire LAM tree (including each SSI module in the directory
tree). The “-l ” parameter can be specified toautogen.sh indicating that it should only run locally (i.e.,
the present working directory), and should not attempt to look forconfigure.in scripts anywhere else.

For example, the following will generate aconfigure script and relatedMakefile.in files for just
the tcprpi SSI module:� �
shell$cd share/ssi/rpi/tcp
shell$../../../../autogen.sh−l� �
3.1.2 Changingautogen.sh ’s Default Behavior

The default behavior ofautogen.sh can be changed in the following ways:

• If a file named.lam no gnu exists in a module’s top-level directory,autogen.sh will not in-
voke the standard GNU tools to generateconfigure scripts. This may be desirable for third-party
modules do not need to have theirconfigure scripts andMakefile.in files regenerated.

• Having a file named.lam ignore in a module’s top-level directory has the same effect as the
.lam no gnu file – the GNU Auto tools will not be invoked. However, unlike.lam no gnu ,
.lam ignore will cause the entire directory (and therefore the entire module) to be ignored by the
LAM infrastructure.

• If an executable script namedautogen.sh exists in the module’s top-level directory (with no cor-
responding.lam no gnu or .lam ignore files), this script will be executed in lieu of running the
GNU Auto tools.

3.1.3 Utilizing Common LAM GNU Auto Tool Elements

If a module uses the standard GNU Auto tools for configuration and buildings, the following notes may be
helpful.

Using LAM Autoconf M4 macros. LAM provides a few Autoconf M4 macros that may be used by
SSI modules for common functionality. Since an SSI module is embedded in the greater LAM directory
structure, it may be convenient to establishMakefile macros that represent LAM’s top source directory
and top build directory, respectively. The following lines, placed in a module’sconfigure.in script will
enable the use of such macros:

3Recent versions of GNU Autoconf prefer the use ofconfigure.ac . This document will use “configure.in ” to mean
“configure.in or configure.ac .”

8

� �
top lam srcdir=’$(topsrcdir)/../../../..’
top lam builddir=’$(top builddir)/../../../..’

AC SUBST(toplam srcdir)
AC SUBST(toplam builddir)� �

The Autoconf macros described below exists in one or more.m4 files in LAM’s top-level config
directory. Each macro will list the.m4 file that needs to be included (either byacinclude.m4 or in the
configure.in script itself), the input arguments, and the output results of the macro.

Using LAM’s Makefile.options file. Makefile.am files may wish to include LAM’s top-level
config/Makefile.options file to include common Automake options. For example, if any of LAM’s
standardized Autoconf macros are used, the following line can be placed in aMakefile.am :� �
include $(toplam srcdir)/config/Makefile.options� �

Notice the use of the$(top lam srcdir) macro – theconfig/Makefile.options file is
relative to LAM’s top source directory, not the SSI module’s top source directory.

Setup Autoconf Macro. The following macro should be invoked before all other LAM-supplied Autoconf
macros in order to setup the environment and perform any other required initialization.

• Macro name:LAMCONFIGURESETUP

• Summary: setup to use LAM’s public M4 macros

• sinclude file: lam functions.m4

• Input arguments:

1. None

• Output:

– None.

• Example usage:� �
sinclude(../../../../config/lamfunctions.m4)
LAM CONFIGURESETUP� �

Module version numbers. Each module has to have its own version number (described in Section7.1.3).
It may be desirable to maintain the version number in a separate file and dynamically assign this number
at configuration / build time. LAM provides a script and corresponding Autoconf M4 macro to parse a
specifically-formatted version number file and assign relevant version number components to environment
variables. The following shows a typical version number file:

9

� �
major=6
minor=6
release=0
alpha=0
beta=2
cvs=1� �

The LAM Autoconf macroLAMGETVERSION can be used to extract the various version number
components from this file.

• Macro name:LAMGETVERSION

• Summary: Obtain the version number components from a text file.

• sinclude file: lam get version.m4

• Input arguments:

1. Directory where theget lam version script resides.

2. The filename of the version number file.

3. The environment variable name prefix.

• Output:

– ${var prefix } VERSIONenvironment variable containing all the relevant components put
together in a single string. Components equaling 0 will be left out. If the alpha component is
included, it will be prefixed with “a”. If the beta component is included, it will be prefixed with
“b”.

– ${var prefix } MAJORVERSIONenvironment variable containing the major version num-
ber component

– ${var prefix } MINORVERSIONenvironment variable containing the minor version num-
ber component

– ${var prefix } RELEASEVERSIONenvironment variable containing the release version
number component

– ${var prefix } ALPHAVERSIONenvironment variable containing the alpha version num-
ber component

– ${var prefix } BETA VERSIONenvironment variable containing the beta version number
component

– ${var prefix } CVSVERSIONenvironment variable containing the CVS version number
component

• Example usage:� �
Get the macro.

sinclude(../../../../config/lamget version.m4)

10

Invoke the LAMGET VERSION macro. The first argument is
constant (LAM’s top−level config directory). The second
argument is the VERSION file in the TCP SSI module directory
(note the use of$srcdir for VPATH builds). The third
argument is the prefix of environment variable names to
be assigned.

LAM GET VERSION(../../../../config, $srcdir/VERSION,
LAM SSI RPI TCP)

After the macro, all 6 components of the version number are
assigned to LAMSSIRPI TCP <component> VERSION, and
LAM SSIRPI TCP VERSION has an overall string name of all
components put together (eliminating 0’s). These can be used
ac arguments to ACDEFINE, for example.

AC DEFINE UNQUOTED(LAM SSI RPI TCP VERSION,
”$LAM SSI RPI TCP VERSION”,
[Overall LAM SSI RPI TCP version number])

AC DEFINE UNQUOTED(LAM SSI RPI TCP MAJOR VERSION,
$LAM SSI RPI TCP MAJOR VERSION,
[Major LAM SSI RPI TCP version])

AC DEFINE UNQUOTED(LAM SSI RPI TCP MINOR VERSION,
$LAM SSI RPI TCP MINOR VERSION,
[Minor LAM SSI RPI TCP version])

...etc. (other version numbers)

The version number can also be displayed to stdout.

echoConfiguring SSI rpi tcp module v$LAMSSI RPI TCP VERSION� �
Basic Setup Macro. The following macro performs several basic setup functions. It is an optional macro;
it handles some of the more mundane aspects of configuration.

• Macro name:LAMBASIC SETUP

• Summary: basic configuration setup functions

• sinclude file: lam functions.m4

• Input arguments:

1. None

• Output:

– SetCLEANFILES to eliminateemacs andvim backup files (* ∼)

– Call AC CANONICALHOST to figure out the host type (in the$host environment variable)

11

– Set the prefix based on--prefix or wherelamclean is found

– Setup to handle--enable-dist flags (see Section3.2.3, page17)

• Example usage:� �
sinclude(../../../../config/lamfunctions.m4)
LAM BASIC SETUP� �

Setting up the C compiler. Setting up the C compiler requires several steps, and may involve user-
specifiedCFLAGSand/orLDFLAGS. Additionally, it is usually preferable to compile with some form of
optimization flags (unless otherwise specified by the user). The entire process has been automated into the
macroLAMSETUPCC.

• Macro name:LAMSETUPCC

• Summary: setup the C compiler and determine associatedCFLAGSandLDFLAGS.

• sinclude file: lam setup cc.m4

• Input arguments:

1. None

• Output:

– CCenvironment variable is set to the C compiler.

– CFLAGSenvironment variable has been set or augmented.

– LDFLAGSenvironment variable has been set or augmented.

• Example usage:� �
sinclude(../../../../config/lamsetupcc.m4)
LAM SETUPCC� �

[Not] Setting up the C++ compiler. Unfortunately, since GNU Libtool did not yet support portably mak-
ing C++ libraries when LAM 7.0 entered its release cycle (see Section1.2.1), using C++ in SSI modules is
not yet supported. As such, there is noLAMSETUPCXXmacro.

Even though Libtool can portably build C++ libraries with the GNU C++ compiler (g++), this does not
fit the requirement of “portable”. Indeed, there are symbol name mangling / linking issues when mixing
g++ with a native C compiler, as well as serious performance implications on platforms with native C/C++
compilers. Therefore, “just useg++” is not a compelling enough reason to supply theLAMSETUPCXX
macro.

12

Checking for a function. The LAM Team’s coding standards demands that preprocessor macros are al-
ways defined. That is, a “true” value is not inferred by a macro being defined, and a corresponding “false”
value is not inferred by a macronotbeing defined – the macro should be defined to be either 1 or 0.

The difference is slight, and mainly philosophical. The main rationale is that the following C preproces-
sor statement should only yield a “true” result if the macro is actually defined to be a nonzero integer – it
shouldnotyield a “true” result of the macro is defined to be zero:� �
#if RESULT OF SOME TEST

/∗ Should only be compiled if RESULTOF SOMETEST is a nonzero
integer; should∗not∗ be compiled if RESULTOF SOMETEST is 0.∗/

#endif� �
To that end, the the Autoconf macroLAMCHECKFUNCis available. It behaves exactly likeAC -

CHECKFUNCexcept that it will always define the output macro to be either 0 or 1.

• Macro name:LAMCHECKFUNC

• Summary: check to see if a function exists

• sinclude file: lam check func.m4

• Input arguments:

1. Function name to check for

2. Name of preprocessor macro to define

3. Arguments to add to linker command line (optional)

• Output:

– CallsAC DEFINE on the second argument, setting it to 0 if the function does not link properly
(perAC CHECKFUNC), or 1 if it does.

• Example usage:� �
sinclude(../../../../config/lamcheckfunc.m4)
LAM CHECK FUNC(printf , LAM SSI RPI FOO HAVE PRINTF)� �

Utility Autoconf Macros. Three utility macros provide the ability to write to theconfig.log file.
Writing information to this file can be immensely useful when helping debugconfigure scripts as well
as providing a single file for users to submit to developers when they run into problems with esoteric con-
figurations.

• Macro name:LAMLOGMSG

• Summary: Output a string message into theconfig.log file.

• sinclude file: lam functions.m4

• Input arguments:

13

1. String message.

2. If the second argument is not empty, the output message inconfig.log will include the line
number that it was invoked from in theconfigure script.

• Output:

– None.

• Example usage:� �
sinclude(../../../../config/lamfunctions.m4)
LAM LOG MSG([This is going to config.log])
LAM LOG MSG([This is going to config.log with a line number], yes)� �

TheLAMLOGFILE macro is used to send output to theconfig.log logfile.

• Macro name:LAMLOGFILE

• Summary: Output a file into theconfig.log file.

• sinclude file: lam functions.m4

• Input arguments:

1. Filename to output.

• Output:

– None.

• Example usage:� �
sinclude(../../../../config/lamfunctions.m4)
LAM LOG MSG([Attempt to compile the following test:], yes)
LAM LOG FILE([conftest.c])� �

TheLAMLOGCOMMANDmacro is used to run a command and send the output to theconfig.log logfile.

• Macro name:LAMLOGCOMMAND

• Summary: output a command and the results of the command to theconfig.log file.

• sinclude file: lam functions.m4

• Input arguments:

1. Command to execute.

2. Action(s) to execute if the command succeeds (i.e., if the executed command has a return status
of zero)

14

3. Action(s) to execute if the command fails (i.e., if the executed command has a return status not
equal to zero)

• Output:

– None.

• Example usage:� �
sinclude(../../../../config/lamfunctions.m4)
LAM LOG MSG([Attempt to compile the following test:], yes)
LAM LOG FILE([conftest.c])
LAM LOG COMMAND([$CC $CFLAGS conftest.c−c], [SUCCESS=1], [SUCCESS=0])� �

3.2 Runningconfigure Scripts

Each module must have an executable (for maximum portability, this should probably be a script) named
configure (regardless of whether it is generated by LAM’s top-levelautogen.sh script or not). If
a module does not have an executable namedconfigure , it will not be configured or built by LAM.
Additionally, if there is a file named.lam ignore in the module’s top-level directory, itsconfigure
script will be skipped, and LAM will ignore that module.

Each module’sconfigure executable will automatically be invoked by LAM’s top-levelconfigure
script. All the same command line flags and environment variables that were used to invoke the top-level
configure script will be passed down to the module’sconfigure script.

If the module’sconfigure executable succeeds (i.e., returns a status code of 0), it will be included in
the overall LAM build. If the module’sconfigure executable fails (i.e., returns a status code of anything
other than 0), it will be totally skipped by the LAM build process. This mechanism is useful for modules
that are dependent upon specific kinds of systems and/or system configurations (e.g., specific hardware). If
the module’s specific requirements are not met, it can have itsconfigure executable fail, and therefore
not be compiled.

3.2.1 Module-Specific Parameters

It is possible to have module-specific--with and/or --enable command line switches that enable
configure-time parameters. In order for these switches to be transparently passed through otherconfigure
scripts, the standard prefix naming convention should be used (although the leading “lam-mpi” may be
left off, since, when running LAM’sconfigure script – a script whose entire purpose is to configure
LAM/MPI – explicitly mentioning “lam-mpi ” would be redundant). For example:� �
AC ARG WITH(ssi−rpi−tcp−short,

AC HELP STRING([−−with−ssi−rpi−tcp−short=BYTES],
[Size of shortest TCP long message]),

[TCPSHORT=$withval])� �
Similarly, it is possible to have module-specific environment variables that are used to pass values to the

module’sconfigure script. These variables should also adhere to the prefix rule. For example, the tcp
rpi’s configure script could use an environment variable as follows:

15

� �
AC ARG VAR([SSI RPI TCP SHORT],

[Size of shortest TCP long message])� �
3.2.2 Returning Values Fromconfigure

There are two forms of output from a module’sconfigure script: its exit status and arbitrary strings.

Exit Status The exit status of a module’sconfigure script determines whether the module will be
compiled into LAM or not. A zero exit status means that theconfigure script was successful and can be
built on this platform. A non-zero exit status means that theconfigure script failed and/or the module
cannot be built for some reason.

LAM will only add a module to the build list if itsconfigure script returns a zero value.

Arbitrary Strings (compiler flags, linker flags, etc.) Some types of modules need to return additional
flags to the lop-level LAM infrastructure to enable LAM to link properly. For example, anrpi module
that uses an underlying communications library must add “-lfoo ” to all MPI-compiled programs (and
potentially “-L/path/to/libfoo ”). -l and-L arguments need to be integrated not only into LAM’s
overall build process, but also into the “wrapper” MPI compilers (mpicc , mpic++ , andmpif77).

A module can return these values by creating a file in its top-level directory containing these strings. The
file is namedssi <kind> <name> config.sh , where<kind> corresponds to the kind of the SSI (see
Table1 on page4), and<name> refers to the module’s name.

The ssi <kind> <name> config.sh file can contain Bourne shell variable assignments for the
variables listed in Table2. The Bourne shell variables can be of the form<scope> EXTRA<flags> ,
where<scope> can be any of the following values:

• LIBLAM: Values required to compile/link to this SSI module. This scope should only need to be used
for LAM SSI kinds, and will be used throughout the LAM source tree.

• LIBMPI : Values required to compile/link to this SSI module. This scope should only need to be used
for MPI SSI kinds, and will be used throughout the LAM source tree.

• WRAPPER: Values required to compile/link to this SSI module. scope should only need to be used for
MPI SSI kinds, and will be used by the wrapper compilers to link user MPI programs.

<flags> can be any of the following values:

• CFLAGS: Any flags that need to be passed to the C compiler in the given scope. This may be compiler
warning flags, debugging flags, optimization flags, etc. Note that this specifically doesNOT include
“ -I ” and “-D ” arguments. Such arguments are likely to only be specific to the SSI module, and need
not be propagated to the rest of the LAM source tree.

• CXXFLAGS: Just likeCFLAGS, but will be passed to the C++ compiler.4

• FFLAGS: Just likeCFLAGS, but will be passed to the Fortran compiler.

• LDFLAGS: Typically “-L ” flags that need to be passed to the linker to link to this SSI module.

4Note that some parts of LAM are actually written in C++, so if you are settingCFLAGS, you should probably also be setting
CXXFLAGS.

16

• LIBS : Typically “-l ” flags that need to be passed to the linker to link to this SSI module.

Note that GNU Libtool automatically takes care of propagating any requiredLDFLAGSandLIBS argu-
ments when building the rest of LAM. Specifically, if Libtool is used to build an SSI module, the module’s
configure script should set appropriateLDFLAGSandLIBS values that can be used to link a final exe-
cutable. Libtool will then automatically propagate these flags to any executable in the LAM source tree that
needs them. Hence, settingLIB* EXTRALDFLAGSandLIB* EXTRALIBS is frequently not necessary;
theWRAPPERSEXTRA* variables are typically the only values that need to be passed upward.

It is nevernecessary for a module to pass “-I ” and “-D ” flags back to the upper-level LAM build-
ing/configuration environment. This is why Table2 does not have any variables forCPPFLAGS. Module-
specific header files, by definition, will only be needed to compile the module. They will not be needed by
the rest of LAM, nor user LAM or MPI programs.

3.2.3 When theconfigure Script Must Succeed

When building a distribution package of LAM/MPI, it is desirable to includeall SSI modules, regardless of
whether they can configure successfully or not. In this case, modules that normally only allow themselves
to be configured successfully when certain conditions are met (e.g., a module that only builds when specific
third party libraries and header files are present) should bypass these checks and allow themselves to be
configured pseudo-successfully. Specifically, the module’sconfigure scripts must return an exit status
of 0 and produceMakefile s that, at a bare minimum, have working “dist ” make targets.

LAM requires this behavior when the--enable-dist switch is used. Specifically: if LAM (and all
of its SSI modules) is configured with this switch, all SSI modules must produce a top-levelMakefile with
a working “dist ” target. Note that no other targets are required to be functional. Hence, all conditional
tests can be skipped such that validMakefile s can be generated, even if the module cannot actually be
built.

SSI modules that use theLAMBASIC SETUPmacro from thelam functions.m4 file automatically
include handling of the--enable-dist switch. If --enable-dist is specified, a warning is displayed
that thedist target may be the only functional make target, and theLAMWANTDIST environment variable
is set to “yes ”. Hence, conditionally-configured SSI modules can simply check the value of$LAM WANT-
DIST to know whether to perform conditional tests or not.

SSI modules that are not built conditionally can ignore this entire section, since they always produce
fully functionalMakefile s that include a validdist target.

4 Building the Module

The rest of this document describes modules that have previously run theirconfigure executables and had
them succeed. Modules that failed the configuration phase will not be built or installed. The main output af-
ter building a module is a GNU Libtool file in the module’s top-level directory namedliblam ssi <kind> <name>.la .

Theall target may function any way that it wishes as long as the GNU Libtool fileliblam ssi -
<kind> <name>.la is produced at the end. The LAM build infrastructure will simply invoke “make
all ” and wait for the output file to be created.

5 Installing the Module

If a module is built statically, “make install ” should be a no-op because the entire contents of the
module will be folded into the upper-level LAM or MPI library. For example, if using GNU Automake and

17

Name Description

LIBLAM EXTRACFLAGS Extra flags that need to be passed to the C compiler for LAM SSI
kinds.

LIBLAM EXTRACXXFLAGS Extra flags that need to be passed to the C++ compiler for LAM
SSI kinds.

LIBLAM EXTRAFFLAGS Extra flags that need to be passed to the Fortran compiler for LAM
SSI kinds.

LIBLAM EXTRALDFLAGS Extra “-L ” arguments required for building executables that link
to liblam.* for LAM SSI kinds.

LIBLAM EXTRALIBS Extra “-l ” arguments required for building executables that link
to liblam.* for LAM SSI kinds.

LIBMPI EXTRACFLAGS Extra flags that need to be passed to the C compiler for MPI SSI
kinds.

LIBMPI EXTRACXXFLAGS Extra flags that need to be passed to the C++ compiler for MPI SSI
kinds.

LIBMPI EXTRAFFLAGS Extra flags that need to be passed to the Fortran compiler for MPI
SSI kinds.

LIBMPI EXTRALDFLAGS Extra “-L ” arguments required for building executables that link
to liblam.* for MPI SSI kinds.

LIBMPI EXTRALIBS Extra “-l ” arguments required for building executables that link
to liblam.* for MPI SSI kinds.

WRAPPEREXTRACFLAGS Extra flags that need to be passed through the wrapper compilers
to the C compiler to compile user MPI programs.

WRAPPEREXTRACXXFLAGS Extra flags that need to be passed through the wrapper compilers
to the C++ compiler to compile user MPI programs.

WRAPPEREXTRAFFLAGS Extra flags that need to be passed through the wrapper compilers
to the Fortran compiler to compile user MPI programs.

WRAPPEREXTRALDFLAGS Extra “-L ” arguments that need to be passed through the wrapper
compilers to the linker when linking user MPI programs.

WRAPPEREXTRALIBS Extra “-l ” arguments that need to be passed through the wrapper
compilers to the linker when linking user MPI programs.

Table 2: Table of available return variables from moduleconfigure scripts.

18

Libtool to build the module, theMakefile.am macro “noinst LTLIBRARIES ” can be used to specify
the module library to be built.

If a module is built dynamically, “make install ” may install the resulting library to LAM’s$pkglibdir
directory. This is typically defined as$exec prefix/lib/lam .5 if using GNU Automake and Libtool
to build the module, theMakefile.am macro “pkglib LTLIBRARIES ” can be used to specify the
module library to be built.

It should be noted that there is no harm in installing a statically-built module – it will just never be
referenced or used.6

Finally, a module may install its own custom helpfile – a text file containing templates for detailed help
messages that can be displayed at run time. These files may be named arbitrarily, but should follow the
prefix rule, and should be installed into LAM’s$sysconfdir . For example, if using GNU Automake, the
following line can be used to properly install a help file (and include it in a tarball distribution):� �
sysconfDATA = lam−ssi−rpi−tcp−helpfile� �

See Section7.2(page26) for more details on help files.

6 Selecting the Module at Run Time

For some component types, there must be at least one available module at run-time. For example, when
invoking lamboot , there must be at least one availableboot SSI module. If not, an error occurs, and
lamboot will abort. Other component types do not necessarily need a module available at run-time. For
example, it isnotan error is there is no checkpoint-restart modules available when running an MPI applica-
tion; the application will simply run without checkpoint-restart support.

However, there may be cases where there are more than one available module for a given kind, and LAM
must choose which one to use at run time. A simplistic system is used that is based on levels of priority, but
can be overridden by user-supplied selections.

6.1 Terminology

An availablemodule is one that:

• Was successfully configured, compiled, and linked into an executable

• Notifies the SSI framework at run time that it can be successfully executed

A module isselectedwhen the SSI framework determines that it will be used at run-time.
Thescopeof the selected module is the set of conditions in which the selected module will be used. For

example, some types will only have one module selected for the life of the entire process, while other types
may select a different module for each MPI communicator. As such, the scope is defined by each SSI kind.

5Note that LAM does not currently support loading dynamic modules. Dynamically-loadable modules are mainly mentioned
for future expansion. See Footnote1.2.1on page4 for more details.

6Indeed, it may be required for future support of dynamic modules that all SSI modulesare installed to LAM’s $pkglib
directory, even if static linking is used. This is trivial to change in relevantMakefile.am s, however.

19

6.2 General Scheme

A user may select a specific module at run-time via the mechanisms described in Section8. Specifically, the
environment variableLAMMPI SSI <kind> or command line parameters “-ssi <kind> <name> ”
are used to select a particular module. In this case, LAM will search for a module of the specified kind with
the desired name. If a module by that name is not found, an error will occur. If a matching module is found,
the module will be queried to see if it is able to be run in the desired scope. If it is, that module will be used.
If the module indicates that it cannot be run, an error will occur.

If the user does not specify which module to use, LAM will attempt to select the “best” module from the
set of available modules. Each module will be queried to see if it is able to run, and if so, what its priority is
(priorities areonly observed when the user has not selected which module to use). Priorities are integers in
the range of[0, 100], with 100 being the highest priority. The module with the highest priority will typically
be selected as the winner (although other factors may enter the selection criteria for MPI programs – see
Section6.2.1, below); the losing module(s) will be ignored in the selection scope. If there is a tie, LAM is
free to pick any of the modules with the highest priority to be the winner.

Although the exact meanings of priorities are arbitrary, the following guidelines are provided for module
authors in assigning priority values:

• A priority of 0 should be interpreted as “if nothing else is available, this one will work.” It is typically
reserved for a last-choice type of module.

• A priority of at least 50 should be given when a module detects that it is running in its “native”
environment. For example, iflamboot is executed in a PBS batch queuing environment, thetm
boot SSI module will return a priority of at least because it knows that it can run.

• A priority of at least 75 should be given when a module detects that it is running in its “native”
environment, and a compile-time switch was enabled to make that module the default for its type.

• A priority of 100 should be reserved for modules thatmustbe selected.

It is also recommended that module authors provide mechanisms for users to override the returned pri-
ority levels. This will allow arbitrary control of run-time selection by users (and/or system administrators).

6.2.1 MPI Selection Algorithm

Since MPI applications must share at least some common set of MPI SSI modules, the decision of which
MPI modules to use has to be a global choice, not a local choice.

In the current implementation, LAM has a fairly simplistic selection mechanism. Each MPI process will
independently choose which RPI and CR modules it will use (based on priority and the MPI thread level)
and sends them all tompirun . If mpirun detects that all processes chose the same module set, it will kill
all the MPI processes and print an appropriate error message. Hence, the module selection choice is not
really global – it is just an error check to ensure that the selection choice was the same among all processes.

The selection algorithm in each MPI process is also fairly simplistic, and is determined by at least two
variables: priority and the requested MPI thread level. Each MPI SSI kind conveys the range of MPI thread
levels that it supports (denoted[tl, tu], for the lower and upper bounds of MPI thread level support that it
can provide, wheretl ≤ tu). The user application indicates the desired level of thread support viaMPI -
INIT THREAD (MPI THREAD SINGLE is assumed ifMPI INIT is used, unless it is overridden by the
LAMMPI THREADLEVEL environment variable). The MPI selection algorithm operates as follows:

1. The requested thread level support is denoted ast.

20

2. Find the highest priorityrpi wheret ≤ tu. If no rpi modules are found matching this criteria, abort.

3. If the rpi module’stl is higher than the requested thread level, increment the requested thread level to
tl.

4. Find the highest prioritycr module within therpi module’s supported thread level range. If nocr
module is found matching this criteria, the process will simply not run withcr support.

5. Eliminate allcoll modules that do not fall within therpi module’s supported thread level range.

This mechanism is far from perfect – it is easy to construct examples where MPI processes have an
overlapping set of MPI modules yet still fail because the processes independently chose different modules.
Future implementations will contain a more intelligent algorithm, such as performing a global intersection
of the available MPI modules between all MPI processes and making a global choice (vs. ensuring that
everyone independently selected the same modules).

6.3 Specific Selection Mechanisms

Each kind defines its own scoping rules and specific selection mechanism. However, all kinds share one part
of the mechanism: the module’s open function. See Section7.1.1.

It is important to node that module selection mechanisms typically run in a distributed fashion. As
such, it is critical that all instances in the distributed job come to a mutually agreeable consensus on which
modules should be selected for a given scope. In many cases, it is sufficient for each module instance in the
distributed job to independently examine the run time environment and come to its own conclusions, relying
on the assumption that all the other module instances will come to the same conclusions. However, module
authors will need to ensure that this condition can be guaranteed by selecting environment characteristics
that will be common across the distributed job. In particular, note that only some types of environments will
automatically propagate environment variables (theboot SSI is of notable relevance here).

If distributed consensus cannot be independently achieved, communication between module instances
may be required. Each kind’s SSI documentation describes when the modules are initialized and examined
for availability and selection – this determines what level of communication is available to the modules.

7 Module Source Code

The rest of this section (and document) describes modules that have previously run theirconfigure
executables and had them succeed. Modules that failed the configuration phase will not reach this phase.
Each module must provide:

• A C struct is exported of typelam ssi <kind> t namedlam ssi <kind> <name> module .
Each SSI kind is responsible for defining (and documenting) itslam ssi <kind> t .

• The exportedstruct is specific to each SSI kind, but will likely contain function pointers to API
calls. The function pointers must be invokable from C and C++.

• Using C++ in the internals of the module is strongly discouraged as building C++ libraries is not [yet]
portable. When GNU Libtool supports making C++ libraries portably, this recommendation will be
removed. See Section1.2.1(page4).

• All public symbols (function names, global variables, etc.) in the library must follow the prefix rule;
they must have the prefixlam ssi <kind> <name> .

21

The top-level SSI include file isshare/ssi/include/lam-ssi.h . This file declares some top-
level SSI functions and the C typelam ssi t (a struct). See Section7.1 for more details. If using
GNU Automake and the macros suggested in Section3.1.3(page8), this file can be included by adding an
appropriate-I flag to Automake’sAMCPPFLAGSmacro. Additionally, the preprocessor symbolLAM-
BUILDING mustbe defined and set to the value of 1. For example:� �
AM CPPFLAGS =−DLAM BUILDING=1 −I$(top lam srcdir)/share/ssi/include� �

Each SSI kind will likely have its own top-level include file, probably located in the same directory as
lam-ssi.h . Consult the documentation for each SSI kind for the specific location of that kind’s header
file. Each SSI kind’s header file will define the datatypelam ssi <kind> t which will be used in all
modules of that kind.

7.1 Base SSI API

Every SSI module – regardless of kind – must export basic description information.

7.1.1 Module Open Function

A module may have anopenfunction. The open function has two main purposes:

• Make the first determination whether it is possible for the module to run or not.7

• Allocate any one-time, module-specific (but action-agnostic) resources.

The open function is described by a pointer type defined as follows:� �
typedef int (∗lam ssi openmodulefn t)(OPT∗args);� �

A typical module open function may be prototyped as follows:� �
int lam ssi kind nameopenmodule(OPT∗args);� �

Although opt is passed in (which is a conglomeration of the command line parameters – see LAM’s
man pageall opt(3) for details on how to use it), it is expected that most parameters and selection
criteria will be passed through the environment (see Section8).

Relevant environment variables will usually adhere to the prefix rule – they will be named in the form
of LAMMPI SSI <kind> <name>,8 where<kind> and<name> will usually be lower case. See the
man pages formpirun(1) , lamssi(7) , andlamssi rpi(7) , as well as Sections6 and8 for more
information about passing parameters to SSI modules through environment variables.

Determine whether the module can run. The open function may check the current run-time environment
and determine if it is able to run. This may entail allocating resources and/or checking environmental or other
external factors. If the module determines that it is able to be run, it should eventually return 1. If not, it
should return 0, and the SSI framework will ignore the module for the remainder of the execution of that
process.

If an open function is not provided by the module, it is implied that the open function returned 1, and
becomes eligible for consideration.

7See Section6 for more details on how a given module is selected (or not) at run time.
8Note that all variables inmpirun ’s environment that begin with the prefixLAMMPI are automatically copied to the envi-

ronment of each MPI process that is started bympirun . In this way, setting the environment variableLAMMPI SSI <kind> -
<name> parameter will automatically be propagated out to all MPI processes in the parallel job.

22

Allocate one-time resources. Depending on the SSI kind, some modules may be invoked multiple times
in different scopes. In such situations, it may be desirable to have one-time initialization and/or resource
allocations that apply to all scopes.

7.1.2 Module Close Function

Each module may also have a close function. The main purpose of the close function is to free any resources
allocated by the module.

This functions is described by a function pointer type defined as follows:� �
typedef int (∗lam ssi closemodulefn t)(void);� �

A typical module close function is prototyped as follows:� �
int lam ssi kind nameclosemodule(void);� �

The close function will be invoked exactly once for each module whose open function returned 1. The
timing of when the close function is invoked varies depending on the kind. For example, theboot SSI has
only one scope – so unselected modules will be closed during the initialization of the process. But thecoll
SSI potentially has many scopes; so availablecoll modules will not be closed untilMPI FINALIZE .

7.1.3 The Base SSI Datatype:lam ssi t

Every module must export a public symbol namedlam ssi <kind> <name> module of type lam -
ssi <kind> t . While each SSI kind is responsible for declaring exactly what that type is, itmustcontain
a lam ssi t as its first element. Thelam ssi t type is used to store basic information about a module
instance (including pointers to its open and close functions, as described in Sections7.1.1and7.1.2).

The lam ssi t type is defined as follows:� �
typedef struct lam ssi 1 0 0 {

/∗ Integer version numbers indicating which SSI API version
this module conforms to.∗/

int ssi major version;
int ssi minor version;
int ssi releaseversion;

/∗ Information about the kind and the version of the kind’s API
that it conforms to∗/

char ssi kind name[LAM MPI SSI BASE MAX KIND NAME LEN];
int ssi kind major version;
int ssi kind minor version;
int ssi kind releaseversion;

/∗ Information about the module itself∗/

char ssi modulename[LAM MPI SSI BASE MAX MODULE NAME LEN];
int ssi modulemajor version;

23

int ssi moduleminor version;
int ssi modulereleaseversion;

/∗ Functions for opening and closing the module∗/

lam ssi openmodulefn t ssi openmodule;
lam ssi closemodulefn t ssi closemodule;

} lam ssi 1 0 0 t;

/∗ Set the default type to use version 1.0.0 of the SSI struct∗/

typedef lam ssi 1 0 0 t lam ssi t;� �
The members of thisstruct are:

• The first group of three members (ssi * version) refers to the version of SSI that the module
conforms to. In this case, they should be hard-coded to 1, 0, and 0, respectively. This is for version
control purposes, and is explained in greater detail below.

• The second group of three members (ssi kind * version) refers to the API version of the kind.
This is also for version control purposes, and is explained below.

• The third group of three members (ssi module * version) refers to the version of the module
instance itself. The contents of these members are left up to the module.

• The open and close function pointers point to functions as described in Sections7.1.1 and 7.1.2,
respectively.NULL values may be supplied for these pointers if the module does not have open and
close functions. Note, however, that aNULL value for the open function implies that the module is
eligible for availability consideration (i.e., it is as if the open functiondid exist, and returned 1 when
invoked).

The base SSI API is currently at version 1.0.0. However, future versions may alter this type, which is
why the first threeint values in the struct will always be the SSI API version number. For example, if
the layout of the type changes in future SSI API versions, the LAM SSI framework will be able to apply
the right type to a given module’slam ssi t by examining the first threeint values. Hence, backward
compatibility may be preserved for modules that do not keep up with the newest versions of the SSI API.9

Note that while the rest of this document refers tolam ssi t for simplicity, it is strongly recommended
for modules to use specific versions of types (e.g.,lam ssi 1 0 0 t andlam ssi rpi 1 0 0 t) so that
if new versions of APIs become available and the base types change, the module will still be able to compile
successfully.

7.1.4 Example Usage: therpi SSI Kind

While the fields oflam ssi t are rather self-explanatory, here is an example from therpi SSI kind. The
rpi defines a type namedlam ssi rpi <version> t . Its first element will always be some version of
lam ssi t :

9Note that this is not guaranteed, however. The LAM Team reserves the right to define “backwards compatibility” however it
wants, such as: “outputting an error message saying, ‘Sorry, this module conforms to SSI API version a.b.c, but the current version
is d.e.f.’ and then ignoring that module.”

24

� �
typedef struct lam ssi rpi 1 0 0 {

lam ssi 1 0 0 t lsr metainfo;

/∗ ...various other members specific to the RPI SSI...∗/
} lam ssi rpi 1 0 0 t;

typedef lam ssi rpi 1 0 0 t lam ssi rpi t;� �
Note that the same version technique is used with therpi SSI kind as with the base SSI API – therpi

API show here is also version 1.0.0. Future versions may change the layout oflam ssi rpi t , but since
the first member of it is guaranteed to be some version oflam ssi t , both the SSI API version andrpi API
version numbers can be guaranteed to be successfully extracted.

To continue the example, thetcp rpi module exports a global symbol namedlam ssi rpi tcp -
module . Here’s an except from its code:� �
const lam ssi rpi 1 0 0 t lam ssi rpi tcp module ={

/∗ First, the lamssi 1 0 0 t struct containing meta
infomration about the module itself∗/

{
/∗ SSI API version∗/

1, 0, 0,

/∗ Module kind name and version∗/

”rpi”,
1, 0, 0,

/∗ Module name and version−− obtained and ACDEFINE’ed by
the tcp RPI configure script∗/

”tcp”,
LAM SSI RPI TCP MAJOR VERSION,
LAM SSI RPI TCP MINOR VERSION,
LAM SSI RPI TCP RELEASEVERSION,

/∗ Module open and close function pointers∗/

NULL,
NULL

},

/∗ ...various other members specific to the RPI SSI...∗/
};� �

25

Note that the open and close functions areNULL. This is because thetcp rpi does not require any
additional per-module initialization or finalization. All of its initialization and finalization code is contained
within therpi API calls. Hence, it will always be considered available for selection.

7.2 Help Messages

LAM has an internal function to help printing lengthy help messages onstdout : show help file() .
This functions allows SSI modules to provide custom text files containing templated help messages that
can be sent tostdout at run-time. This allows modules to print detailed, thorough help messages at run
time, but alleviating the need for long sequences ofprintf() statements in code. The prototype for this
function is:� �
#include<etc misc.h>

void showhelp file(const char∗filename,const char∗program,const char∗topic, ..., NULL);� �
The arguments are as follows:

• filename : The name of the file to look for the templated message. This should typically follow the
prefix rule, and be a file installed in the LAM$sysconfdir (typically $prefix/etc). If NULL
is provided for this argument, LAM’s main help file will be used (which is probably not what you
want).

The format of the file is a simple text-based layout; LAM’s main help file provides a lot of examples of
templated help messages – see$sysconfdir/lam-helpfile). Note that multiple help message
can be contained in a single file.

• program : The first key in finding the specific help topic in the help file. ANULL value matches the
key “ALL”.

• topic : The second key in finding the specific help topic. ANULL value matches the key “ALL”.

• Additional arguments may follow (varargs-style) that will be substituted into the templated help mes-
sage. The list of arguments (even if it is empty)mustbe terminated withNULL.

7.3 Verbosity

The global variablelam ssi verbose will be set to a non-negative integer if the user has asked for
general SSI verbosity (otherwise it will be set to -1). See thempirun(1) andlamssi(7) man pages for
more details about SSI verbosity.

If this variable is 0, modules are encouraged to write minimal diagnostics using the LAM debug system.
Larger values should cause more module-specific diagnostic information to be printed. The exact meanings
of larger values are determined by the modules themselves.

The LAM debug system usesprintf -style varags parameter passing. The functionlam debug -
output() is used to output verbosity information to the output stream(s) that the user has chosen. For
example:� �
if (lam ssi verbose>= 10)

lam debug(lamssi did, ”Hello, world. I am %d of %d”,
rank, size);� �

26

Note the use of another global variable –lam ssi did (debug ID). It is the first parameter to thelam -
debug output() function call and should not be modified. Also note that “\n” is not necessary at the
end of the string. Since the debug output stream may be sent to multiple different kinds of output (including,
for example, the syslog), the LAM debug system will take care of adding a “\n” if it is necessary.

Also note that each SSI kind may have its own verbosity global variable and debug ID. If so, modules
should use those instead of the overall SSI values.

The LAM full debugging output interface is described in [1].

8 Passing Run-Time Parameters to the Module

Parameters can be passed to SSI modules at run-time by the command line or through the environment.
Althoughargc andargv are passed to all module open functions, it is preferably to leave the command
line in the user domain and pass all SSI module parameters through the environment. This is also somewhat
influenced by the fact that there is no portable way to obtainargc /argv from Fortran programs; relying
on the environment is the safest method.

The mpirun(1) man page goes into detail about how its-ssi command line switch can be used
to set environment variables that will automatically be propagated to all MPI processes that are part of
the parallel job. The names of these environment variables follows the prefix rule – they will be prefixed
with LAMMPI SSI <kind> <name>. For example, the tcp RPI module can take an optional parameter
“ rpi tcp short=size ” to specify the shortest long message size. This could be passed in one of two
ways:

1. Explicitly set an environment variable:� �
$ export LAM MPI SSI rpi tcp short=131072
$ mpirun C myprogram� �

2. Use the-ssi command line switch tompirun :� �
$ mpirun−ssi rpi tcp short 131072 C myprogram� �

Both methods will yield exactly the same result – the variableLAMSSI rpi tcp short will be in
the environment of each MPI process, and have a string value of “131072 ”.

Since parameters are specific to a module, each module should document what parameters it will accept.
A good place to put such documentation would be manual pages that get installed to the standard man page
directory (${prefix }/man) during make install . As with almost everything else, the prefix rule
would apply to manual pages; they should be named in the form of “lam ssi <kind> <name>.7 ”,
although shortening to “lamssi <kind> <name>.7 ” is also acceptable.

9 Unresolved Issues

The following issues are un-resolved or otherwise less-than-optimal:

• “ ./configure --help ” doesn’t show all the options from the individual SSIconfigure scripts.

Suggestion: some other top-level LAM script (e.g., “./configure help ”?) that does the Right
Thing to print out all the available options...?

27

10 Acknowledgements

This work was supported by a grant from the Lily Endowment and by National Science Foundation grant
0116050.

References

[1] Brian Barrett, Jeff Squyres, and Andrew Lumsdaine.LAM/MPI Design Document. Open
Systems Laboratory, Pervasive Technology Labs, Indiana University, Bloomington, IN. See
http://www.lam-mpi.org/ .

[2] Richard Stallman et al.GNU Coding Standards. Free Software Foundation, October 2001. Included in
the GNUautoconf distribution; seeftp://ftp.gnu.org/gnu/autoconf/ .

[3] Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, and Andrew Lumsdaine. Checkpoint-restart support
system services interface (SSI) modules for LAM/MPI. Technical Report TR578, Indiana University,
Computer Science Department, 2003.

[4] Jeffrey M. Squyres, Brian Barrett, and Andrew Lumsdaine. Boot system services interface (SSI) mod-
ules for LAM/MPI. Technical Report TR576, Indiana University, Computer Science Department, 2003.

[5] Jeffrey M. Squyres, Brian Barrett, and Andrew Lumsdaine. MPI collective operations system services
interface (SSI) modules for LAM/MPI. Technical Report TR577, Indiana University, Computer Science
Department, 2003.

[6] Jeffrey M. Squyres, Brian Barrett, and Andrew Lumsdaine. Request progression interface (RPI) system
services interface (SSI) modules for LAM/MPI. Technical Report TR579, Indiana University, Computer
Science Department, 2003.

28

Index

.lam ignore file, 8, 15

.lam no gnu file, 8

AC CANONICALHOSTM4 macro,11
autogen.sh command,7, 8

commands
autogen.sh , 7, 8
configure , 7
get lam version , 10
lamclean , 12

configure command,7
configure flags

--enable-dist , 12, 17
--prefix , 12

configure.ac file, 8
configure.in file, 8

--enable-dist configure flag,12, 17
environment variables

LAMMPI THREADLEVEL, 20

files
.lam ignore , 8, 15
.lam no gnu , 8
configure.ac , 8
configure.in , 8
lam check func.m4 , 13
lam setup cc.m4 , 12
lam functions.m4 , 9, 11, 13, 14
lam get version.m4 , 10

get lam version command,10

LAMBASIC SETUPM4 macro,11
LAMCHECKFUNCM4 macro,13
lam check func.m4 file, 13
LAMCONFIGURESETUPM4 macro,9
lam debug output() , 26
LAMGETVERSIONM4 macro,10
LAMLOGCOMMANDM4 macro,14
LAMLOGFILE M4 macro,14
LAMLOGMSGM4 macro,13
LAMMPI THREADLEVELenvironment variable,

20
LAMSETUPCCM4 macro,12

lam setup cc.m4 file, 12
lam functions.m4 file, 9, 11, 13, 14
lam get version.m4 file, 10
lamclean command,12

M4 macros
AC CANONICALHOST, 11
LAMBASIC SETUP, 11
LAMCHECKFUNC, 13
LAMCONFIGURESETUP, 9
LAMGETVERSION, 10
LAMLOGCOMMAND, 14
LAMLOGFILE , 14
LAMLOGMSG, 13
LAMSETUPCC, 12

MPI functions
MPI INIT, 20
MPI INIT THREAD, 20

MPI INIT, 20
MPI INIT THREAD, 20

--prefix configure flag,12

show help file() , 26

29

	Overview
	Terminology
	LAM's Role in SSI
	Statically vs. Dynamically Linked Modules

	LAM SSI and MPI SSI
	Module Basic Requirements
	Notable Side Effect: Long Public Symbol Names
	Organization

	Directory Layout
	Configuring the Module
	Generating configure Scripts
	Using autogen.sh on a Single Directory
	Changing autogen.sh's Default Behavior
	Utilizing Common LAM GNU Auto Tool Elements

	Running configure Scripts
	Module-Specific Parameters
	Returning Values From configure
	When the configure Script Must Succeed

	Building the Module
	Installing the Module
	Selecting the Module at Run Time
	Terminology
	General Scheme
	MPI Selection Algorithm

	Specific Selection Mechanisms

	Module Source Code
	Base SSI API
	Module Open Function
	Module Close Function
	The Base SSI Datatype: lam_ssi_t
	Example Usage: the rpi SSI Kind

	Help Messages
	Verbosity

	Passing Run-Time Parameters to the Module
	Unresolved Issues
	Acknowledgements
	References

